Recent advances on the XYG3-type of doubly hybrid density functionals
发布日期:2017-10-09   作者:袁会敏   浏览次数:121

目:Recent advances on the XYG3-type of doubly hybrid density functionals

报告人:徐昕 教授

主持人:袁清红

间:20171011日下午3

点:理科大楼A814

报告人简介:

徐昕,1991年获厦门大学理学博士学位,1995-2010年为厦门大学教授,1998年起为博士生导师,2006-2010年为厦门大学卢嘉锡讲座教授、福建省闽江学者。2010年起为复旦大学特聘教授。

19957月起,受日本学术振兴会的资助,分别应诺贝尔化学奖得主福井谦一以及著名量子化学家中迁博等邀请,以日本京都大学工学部访问教授身份,先后六次参加国际合作项目;2000年-2003年,应著名量子化学家、美国科学院院士W.A. Goddard III的邀请,在美国加州理工学院化学系访问工作。与日本京都大学、美国加洲理工学院、香港科技大学、瑞典皇家理工、法国巴黎化工学院、法国里昂高师等开展长期科研合作。国内外学术单位及会议邀请报告200余次。

担任厦门大学固体表面物理化学国家重点实验室副主任(19962003);中国化学会理事(19982002);固体表面物理化学国家重点实验室学术委员会委员(2003-);教育部计算物质科学实验室学术委员会委员(2010-);煤炭间接液化国家工程实验室技术委员会委员(2010-);教育部湖南省理论计算与模拟重点实验室学术委员会委员(2011-);河北大学兼职教授(1996-);中科院大连化学物理研究所兼职研究员(20042008);湖南科技大学湘江学者(2010-2014);Journal of Theoretical and Computational Chemistry (JTCC)编委(20072015),Theoretical Chemistry Account编委(2014-),《物理化学学报》及《化学物理学报》编委(2010-),《化学学报》编委(2011-)等。

曾获中国化学会青年化学奖(1995);霍英东青年教师奖(1998);教育部首届青年教师奖(2000);国家自然科学基金杰出青年基金(2006)等。

在密度泛函理论和理论催化两方面进行了深入系统的研究,取得了一些国内外同行公认的科研成果。在国内外刊物发表论文200余篇,包括:Science(2),Nature Commun(1), Proc. Natl. Acad. Sci. USA (8), Phys. Rev. Lett.(2), J. Am. Chem. Soc.(3)Nano. Lett.(2),Adv. Matt.(1)等。谷歌学术引用9千余次H指数49。发表在美国科学院院誌上的新一代密度泛函XYG3的论文Proc. Nat. Acad. Sci, USA, 106 (2009) 4963入选2009年度中国百篇最具影响力国际学术论文

报告内容简介:

Doubly hybrid (DH) functionals present a new class of density functionals, which enfold the non-local orbital-dependent components not only in the exchange part, but also in the correlation part. Different types of DH functionals have been proposed according to different philosophies [1-3], where the XYG3-type of functionals (xDH) [3-11] is unique in its framework that a conventional (general) Kohn-Sham (KS) functional, such as B3LYP [3-6] or PBE0 [7] or PBE [8], is utilized for the self-consistent-field (SCF) calculations to generate orbitals and density, with which a DH functional is used for the final energy evaluations.

  

This talk focuses on our recent efforts in the development of the xDH functionals [6-16]. (1) A long-range-corrected XYG3 (i.e., lrc-XYG3) is developed, which includes a range-dependent term from the second order perturbation theory for better description of dispersive interaction [6]. (2) Analytic gradients are developed, where the non-variational contributions from the SCF functional to the final energy functional are solved through a coupled-perturbed KS equation [9, 10]. (3) Fractional charge behaviours of DH functionals are explored [11,12], which lead to good predictions of ionization potentials, electron affinities and fundamental gaps from the perspective of fractional charges. (4) A non-fitted DH functional, namely PBE-ACDH, is constructed based on the adiabatic connection (AC) formalism, coordinate scaling relations, and the second order Görling-Levy perturbation theory [8], where contributions from density scaling and singles are explicitly considered.

  

Limitations of the present approaches and the direction for future improvements will be discussed.

  

This research was sponsored by the Ministry of Science and Technology of China (2013CB834606), and National Natural Science Foundation of China (21688102, 91427301).

  

[1] Y. Zhao, B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004).

[2] S. Grimme, J. Chem. Phys.124, 034108 (2006).

[3] I. Y. Zhang, X. Xu, and W. A. Goddard III, Proc. Nat. Acad. Sci, USA, 106, 4963 (2009).

[4] I. Y. Zhang, X. Xu, Y. Jung, and W. A. Goddard III, Proc. Nat. Acad. Sci, USA, 108, 19896 (2011).

[5] I. Y. Zhang, X. Xu, Int. Rev. Phys. Chem.30, 115 (2011).

[6] I. Y. Zhang, X. Xu, J. Phys. Chem. Letters, 4, 1669 (2013).

[7] I. Y. Zhang, N. Q. Su, É. A. G. Brémond, C. Adamo, X. Xu, J. Chem. Phys.136, 174102 (2012).

[8] N. Q. Su, X. Xu, J. Chem. Phy., 140, 18A512 (2014)

[9] N. Q. Su, I. Y. Zhang, X. Xu, J. Comput. Chem., 34,1759 (2013).

[10] N. Q. Su, C. Adamo, X. Xu, J. Chem. Phys.139, 174106 (2013).

[11] N. Q. Su, W. T. Yang, P. Mori-Sánchez, X. Xu, J. Phys. Chem. A 118, 9201 (2014).

[12] N. Q. Su, X. Xu, J. Chem. Theory Comput.11:4677 (2015).

[13] N. Q. Su, X. Xu, J. Chem. Theory Comput.12: 2285 (2016).

[14] N. Q. Su, Xin Xu, WIREs Comput. Mol. Sci., 6: 721 (2016).

[15] N. Q. Su, Xin Xu, Chem. Comm. Feature Article, 52: 13840 (2016).

[16] N. Q. Su, X. Xu, Annu. Rev. Phys. Chem.68: 155 (2017).