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Abstract: We investigate the formation and propagation of ultraslow weak-light solitons and
their memory in the atomic gas filled in a kagome-structured hollow-core photonic crystal fiber
(HC-PCF) via electromagnetically induced transparency (EIT). We show that, due to the strong
light-atom coupling contributed by the transverse confinement of the HC-PCF, the EIT and
hence the optical Kerr nonlinearity of the system can be largely enhanced, and hence optical
solitons with very short formation distance, ultraslow propagation velocity, and extremely low
generation power can be realized. We also show that the optical solitons obtained can not only
be robust during propagation, but also be stored and retrieved with Kigheecy through

the switching & and on of a control laser field. The results reported herein are promising for
practical applications of all-optical information processing and transmission via the ultraslow
weak-light solitons and the kagome-structured HC-PCF.
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1. Introduction

In recent years, tremendou$ats have been paid to the investigation on optical pulse memory,
which is important for the realization of fast optical information processing. One of the main
techniques to realize optical pulse memory is the utilization of electromagnetically induced
transparency (EIT) [1,2], an interesting quantum interfereffeegtypically occurring in three-

level atomic systems. EIT can be used not only to cancel optical absorption in resonant quantum
systems, but also to bring many novel nonlinear optiffglats at weak-light level, including the
production of weak-light solitons [3-5]. Based on the dark-state polariton [6] inherent in EIT
systems, a signal optical mode can be mapped into an atomic mode, stored temporarily, and
then retrieved from atoms by switchingfand on of a control laser field [7—10].

However, nearly all researches reported up to now on the storage and retrieval of optical
pulses via EIT are limited within linear optical regime. Due to the significant dispersion inherent
in resonant systems, linear optical pulses in EIT-based atomic ensembles are not stable, resulting
in a serious deformation for retrieved pulses and hence the loss of optical information. For
practical applications of light memory, it is desirable to obtain a signal pulse that is robust
not only during propagation, but also during storage and retrieval, and hence to acquire high
efficiency and fidelity.

Recently, the EIT-based memory has been generalized to weak nonlinear optical regime,
where the storage and retrieval of optical soliton pulses have been analyzed [11]. Neverthe-
less, because the optical pulses and atomic gases considered in Refs. [11] work in free space,
the difraction dfect in those systems can not be neglected, which makes the optical soliton
pulses unstable during propagation as well as during storage and retrieval. In addition, a larger
power is needed for generating the optical soliton pulses in those systems since the coupling
between light and atoms is weak in free space.

In this article, we propose a scheme for the formation, propagation, storage and retrieval of
the optical soliton pulses in an atomic gas filled in a kagome-structured hollow-core photonic
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crystal fiber (HC-PCF) [12-16] via EIT. Because of the transverse confinement provided by the
fiber, the difraction dfect of the optical pulses is completely eliminated. We show that the EIT
and hence the Kerr nonlinearity may be largely enhanced, which can be used to balance the
dispersion and hence supports the production of the optical soliton pulses in the system. We
prove that the optical soliton pulses obtained with such a scheme have very short formation
distance & 2cm), ultraslow propagation velocity( 10~° ¢), and extremely low generation
power ¢~ nW); in addition, they are robust during propagation and can be stored and retrieved
with high dficiency through the switching on andf @f a control laser field. The results re-
ported here are promising for practical applications of all-optical information processing and
transmission.

Before preceding, we note that bandgap-structured HC-PCFs [15-17] can also be used to per-
form EIT (see Refs. [18-25]), and to form an optical soliton pulse as shown recently by Facéo
et al. [26] where the fiber-core diameter is less thgmm. However, the use of the kagome-
structured HC-PCF possesses many advantages, including: (i) The kagome-structured HC-PCF
has a large core diamet&6(:m-100 um in our scheme), which is easier not only for fabrica-
tion and but also for loading more atoms in the fiber core; (ii) Because of the larger atomic
number in the kagome-structured HC-PCF, the coupling between the light field and the atomic
gas is stronger, which is desirable for forming optical solitons within a shorter distance and
with a lower generation power. (iii) Comparing with bandgap-structured HC-PCFs, the kagome-
structured HC-PCF has a larger transverse transit time for the atoms in the fiber core, which
admits a smaller dephasing and hence a higfariency for the storage and retrieval of the
optical soliton pulses (see a further discussion in Sec. 5).

The rest of the article is arranged as follows. In Sec. Il, the theoretical model is described. In
Sec. lll, the formation and propagation of ultraslow weak-light solitons is investigated. In Sec. 4,
the storage and retrieval of optical soliton pulses are studied. Finally, in Sec. IV a discussion
and a summary on the main results obtained in this work is given.

2. Model

We consider a pulsed signal laser fi#dld and a continuous-wave (CW) control laser figlg,

both are guided inside a kagome-structured HC-PCF with (hollow) core ragliaad pitch

Ao [Fig. 1(a)]. The core of the HC-PCF is filled with an atomic gas with a lambda-type level
configuration [Fig. 1(b)]. In the absence of the atomic gas, the HC-PCF allows many eigen-
modes of electric fielE with the forme,, ¢ (z,y) exp{i[fa(w)z — wt]}, heree,, ¢u(z,y),

and g, are the polarization unit vector, eigenfunction, and propagation constant for the mode
with index « (for a simple introduction of the eigenmodes in the kagome-structured HC-PCF,
see Appendix A). In the present study, we are interested in the fundamental mode of the HC-
PCF made of silica. The blue solid line in Fig. 1(c) is the numerical result of the electric-field
distribution in the radius direction (with= /xz2 + y? the radius coordinate of the system) of

the fundamental mode fof, = Ag = 13 um when the atomic gas is absent. The shape of the
fundamental mode can be fitted well by the zeroth-order Bessel function [27] [the red dashed
curve in Fig. 1(c)]. One sees that the fundamental mode is well confined in the fiber core, as
shown in the inset of Fig. 1(c). In Fig 1(b)l), |2), and|3) are respectively the metastable,
ground, and excited stated; and A, are respectively one- and two-photon detunirigg,

(j = 1,2; 1 = 3) denotes the spontaneous emission rate fforto |j); ws andQ, [w. and

Q.] are respectively the angular and half Rabi frequencies of the signal (control) field, which
is coupled to the transitiofl) « |3) (|2) + |3)). Both of the signal and control fields be-
long to the fundamental mode of the HC-PCF and propagate alaliigection, with the form

E=E+E =3, .8 e &z, ) q(x, y) elPrz=etl 4 cc., wheref, = B(w),

260‘/lcff

Vet = L, [[ |qi(z,y)|*dzdy is the dfective mode volume for the mode = w;, L. is the



Research Article Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 19098 I

Optics EXPRESS Y X

(a)

Cesium atoms

(c) (d)

@
3 1 1:rp=13m 2:rg=17pm 3:ry=100pm
I 920
Il
< — 3
qé 'e
£ 05 S
2 ¥ 45
e
E ) 2
° —Numercial result \
§ ---0th order Bessel function| “
=
0 5 10 15 % 3 o 1 2,
r (um) A®(Hz) x10

Fig. 1. (a) Kagome-structured HC-PCF with core raditsand pitchAg. (b) Atoms of a lambda-
type three-level configuration are filled within the hollow core of the fiber, and initially prepared in
the metastablél) for suppressing four-wave mixingfect. (c) Numerical result of the electric-field
distribution of the normalized fundamental-mode amplitude as a function of radius coordinate
HC-PCF made of silica when the atoms are absent. (d) Absorption spectruit) hthe signal field

as a function ofAw for different core radiusg. The red, blue and green lines are for = 13 um,

17 pm, and100 pm, respectively. The other notations in the figure are explained in the text.

fiber length, the subscript (¢) denotes the signal (control) field, and c.c. represents complex
conjugate.

We choose a cesium atomic gas with the energy levels selectgdl as|625 o, F = 4),
|2) = [6%S1/2, F = 3), and|3) = |62P; /5, F' = 4). For such level configuration the wave-
lengths of the signal and control fields are approximately equalXj.ez A\, = 852nm) [28],
which meansy.(z,y) ~ gs(z,y) = q(x,y). For an analytical description, in the following
the fundamental mode is approximated by the zero-order Bessel fungtion) = Jo(kr)
whenr < 7y andg¢(z,y) = 0 whenr > ro with & ~ 2.405/r¢ [27], which gives
Vel ~ Vet = qr2 g2 (kro)L, = V. In order to have a quantitative discussion on light-
beam confinementfiect in the HC-PCF, following the approach in Refs. [29, 30] we define a
reference mode volume of free space, V&' = 7R2 L,. The quantityR, (determined by
input condition) is the transverse radius of laser beams in free space, introduced here for illus-
trating the confinementfkect due to the HC-PCF by comparing the EIT in the HC-PCF and
the EIT in free space. Note that experimentdlly is usually large (e.g2, = 100 um [31],
which is chosen in the following discussion). Then the electric field can be expressed as

Ry (e
E= —& (2, iBrz—wt] .C.. 1
> e il ) e + oo 1)

l=s,c
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When the atomic gas is filled into the fiber, under electric-dipole and rotating-wave approxima-
tions, the Hamiltonian of the system in the interaction picture réagds= — Z?Zl N (G-

RlC (2, y)Qs 1) (3] + C(2,9)2%[2)(3] + hc], where((z,y) = maq(z,y), and Qs =
Ip15lEs/h (e = |PaslEc/R) is the half Rabi frequency of the signal (control) field, wisly

the electric-dipole moment associated with the sfgteand the statél). The equation of mo-

tion for the density matrix- in the interaction picture reads [32]

in <% n r> o= [Him, a} , )

whereo is a3 x 3 density matrix with matrix elements;; = |j){!|, I is a3 x 3 relaxation
matrix denoting the spontaneous emission and dephasing. The explicit expression of Eq. (2) is
presented in Appendix B.

The equation of motion for), can be obtained by the Maxwell equatich’E —
(1/c*)0?E/0t* = [1/(e0c?)]0*P,/0t?, with the electric polarization intensity given I8y, =
Phost + N Py3031 expli(Bsz — wst)] + €.C., whereV is the atomic densitPhost = €0 XhostE iS
the electric polarization intensity, Witkhost = Xhost (%, ¥) is the susceptibility of HC-PCF in
the absence of the atomic gas. According to the expression of the electric field [i.e. the Eq. (1)]
and using Eq. (18), the Maxwell equation under a slowly varying envelope approximation is

reduced to 5 2 5
i (& + EZC; E) Qs + K13(031) =0, 3)

wheren = [1 + xnost(2,%)]'/? is the refractive indexy[Los: (1, y) is the electric susceptibil-

ity] of the HC-PCF in the absence of the atomic gas, = Nw;|p;3|%/(2keocneg) is light-

atom coupling coficient with n.g the dfective refractive index. In Eq. (3) we have defined

o3 = a31((z,y) and(y) = [[[((z,y)*¥(z,y)dady/ [[ |((x,y)|*dzdy, with ) an arbitrary

function of z andy (for the detailed derivation of Eq. (3), see Appendix A). We see that, the

diffraction dfect of the signal field isféectively canceled due to the transverse (mode) confine-

ment of the HC-PCF.

For simplicity, the following assumptions are made for our theoretical calculations presented
below: (i) To suppress Doppleffect, the atoms are assumed to be cooled to low temperature
and the signal and the control fields are injected with opposite directions. (ii) To reduce the
dephasing rate caused by the adsorption of atoms to the inner walls of the fiber core, the inner
walls are coated with some materials, or a light-induced atomic desorption process is used to
release the atoms into the center of fiber core, or a dipole trap along the fiber axis is employed
to attract the atoms away from the inner walls of the fiber. (iii) The atoms are initially popu-
lated on the metastable stdie by an optical pumping to suppress four-wave mixirftpet.

These assumptions are realistic because related experiments have already been done in recent
years [19, 21, 33].

3. Ultraslow weak-light solitons in the HC-PCF
3.1. Linear dispersion relation and EIT enhancement

We first solve the Maxwell-Bloch (MB) equations (2) and (3) in the linear regime and discuss
the linear property of the system. The steady state before the signal field opens-s 1

and all otherr;; are zero. When the signal field is switched on but very weak, the system will
evolve into a time-dependent state and the solution of the MB equations (2) and (3) have the
SOlUtiOﬂO’ll =1, o1 ~ GXP(ZG) (_] = 2,3), Qg ~ exp(i@), andO'QQ = 033 = 032 = 0, with

0 = K(Aw)z — Awt [34]. The linear dispersion relation is given by

_ &(n% (Aw + da1) >7

K
€ Meft [C(z,9)2%|% — (Aw + d21)(Aw + d31)

+ /*€13< (4)
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here the definitions of the parametéss andds; have been given in Appendix B. Because the
signal field is resonant with the atoms in the fiber, in usual cases one expects that a significant
absorption will happen. However, the absorption can be made very low in the present system.
Fig. 1(d) shows the calculation result on the imaginary parikofi.e. Im(K), as a function
of Aw, where the blue, red and green lines are respectively for the core nadigs13 pm,
17 pm, and100 um. From Fig. 1(d) we see that: (i) A transparency window (i.e., the dip near
Aw = 0) is opened, which is due to the quantum interference (i.e. Bf€reinduced by the
control field; (ii) For diferent core radiusy, the width of the transparency window (called EIT
transparency window) is flerent. The smaller the value gf, the wider the EIT transparency
window, which means that the ElTfect is enhanced when the core radiyss reduced. The
physical reason of the enhancement of Effieet is due to the existence of the (geometrical)
confinement ffect in the kagome-structured HC-PCF. By the confinement, the controffield
has an enhanced fact@R , /70)[J1(kro)] ™!, which leads to a larger EIT transparency window
for smallerry. For instance, the transparency window is very widerfor= 13 um, which will
be used in our following calculations.

When plotting Fig. 1(d), the system parameters are choséh as 1.0 x 107 s, A, =
Az =0, |P13] = |Pas] = 3.8 x 10727 C-cm [28], N = 2.0 x 10'° em™3, R, = 100 pm,
I's >~ 2v31 = 7 X 5.23 MHz, 31 = v32. Note that the ground-state dephasing r@? for
the atoms filled in the HC-PCF may be caused by many physical factors, widely discussed in
literature (see, e.g., [18, 20, 25, 35-37]). Here we taj{@ = 721 ~ 27 x 0.05 MHz in our
numerical calculations carried out here and below, which is slightly larger than that given in the
recent experiment [25] in order to account for the factors causing the dephasing not included in
our model.

3.2. Nonlinear envelope equation

The approach above is valid not only for CW but also for pulsed signal fields. However, vanish-
ing one- and two-photon detunings assumed there usually cannot be satisfied in reality, which
will result in a dispersionfect in the system and hence the spreading of the signal pulse. In
particular, in light memory what we need is to store and retrieve a signal pulse within a finite
time duration. The sideband components of the pulse are detuned from the energyfiexel di
ence of the related transitiofil{ to |3) in the present system), which brings a non-negligible
dispersion ffect to the system. Suclffect brings not only a deformation of the signal pulse but
also a reduction of the quality of light memory in the system.

In order to suppress the dispersidiieet and obtain a shape-preserving signal pulse useful
for light memory, one can exploit the Kerffect of the system to balance the dispersion [3, 4].

In fact, the Kerr nonlinearity of the system can be largely enhanced in the present system by
both the EIT &ect and the confinemenffect of the HC-PCF, as shown below.

To this end, based on the MB equations (2) and (3) we derive a nonlinear envelope equation
describing the nonlinear evolution of the signal field by using the method developed in Ref. [4].
Taking the asymptotic expansion, = > ;- elo—glk) (4, k =1, 2, 3;a§2) = §;10k1), andQ, =
Yooy elef). Herec is a dimensionless small parameter characterizing the typical amplitude of
the signal pulse. All the quantities on the right-hand side of the expansion are considered as
functions of the multi-scale variables= ¢!z (1 =0, 1,2, ---)andt; = ¢t (1 =0, 1, 2, - --).
Substituting the expansions into the Egs. (2) and (3) and comparing tiieeygs ofe™ (m=1,

2, 3), we obtain a set of linear but inhomogeneous equations which can be solved order by order.

The first-order{n = 1) solution is given by

Q) = F exp(if), (5a)

(1) _ _ 9j3(Awda) = 8;5C" (2, ) 0
e |C(:v,y)Qc|2—(Aw+d21)(Aw+d3l)<(Iay)F€ , (7=2,3) (5h)
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with all otheraj(.ll) = 0. Hered = K(Aw)zg — Awty, with F' a yet to be determined en-
velope function depending on the indicated slow variablgesz;, and zo and K (Aw) the
same as (4). At the second ordet (= 2), we obtain the solvability conditiondF/0z, +
(0K /0Aw)OF /0t1] = 0, which shows that the signal-pulse enveldp&avels with the group
velocity V, = K; ' = (0K/0Aw)™?, given by

1 <n2> (Aw + d21)? + [¢ (2, ) |? B
V= {E e *””13<[|<<x,ymc|2—<Aw+dzl><Aw+d31>P>} P

The explicit expressions of the second-order approximation solutions are given in Appendix C.

With the above results we go to the third order £ 3). A solvability condition in this order
yields the equation for the signal-pulse envelofeé’/dz, — (1/2)[0%K/0Aw?| 9*°F/ot3 —
W|F|?Fe=2%%2 = 0, hereKs = 9?°K/0Aw? describes the second-order dispersion, and the
nonlinear co#ficient

W= —x (@, y)Qeass” + (Aw + dor) (24} + ay)
" I¢(z, y)Q]? — (Aw + d21)(Aw + d31)

(7)

is related to optical Kerrféect describing the self-phase modulation of the signal field.
Combining the solvability conditions in all orders and returning to the original variables, we
obtain the equation

i— — ——— =~ W|U]*U = —ial, (8)
T

wherer = t — 2/V,, U = eFe~%2, anda = €%a, with the definition ofa presented in
Appendix C. Note that Eq. (8) is valid fdkw <« w;. Since we are interested in the evolution of
the signal pulse at the center frequengy in the calculations given below all the deients

in Eqg. (8) will be evaluated ahw = 0.

3.3. Ultraslow weak-light solitons

The third-order nonlinear optical susceptibilityy®> of the signal field is proportional to the
self-phase modulation cfiecient in Eq. (8) via the relation

2¢ |pyal?
X = w——' ;j;' W )

Using the system parameters given in the last subsection bufyith 3.6 x 106 s, Ay, =

25 x 107 s Az = 3.75 x 108 s71, N = 2.0 x 10'° cm~2 andry = 13 um, we obtain

W = (=5.3840.16i) x 10~ cm~' s> and Re(®)) = —1.56 x 10~2 cm? V—2, which is many
orders of magnitude larger than that in conventional fibers [38]. Hence the HC-PCF with the
filled atomic gas via EIT possesses greatly enhanced Kerr nonlinearity [39], contributed from
the quantum interferencdfect in the (resonant) atomic gas, which is very useful for practical
applications of many nonlinear optical processes, includifigcive four-wave mixing and
formation of weak-light solitons.

Since the system under study is a resonant one, thfiicdeats in Eq. (8) are generally
complex. However, when the system works under the EIT condition, the absorption of the
signal field can be largely suppressed, and therefore the imaginary part of thesaeruefhi
can be made to be much smaller. Thus Eg. (8), when writing into the dimensionless form, can
be approximated by the nonlinear Schrédinger equaitiarn/ds + 0%u/00? + 2|ul?u = 0,
whereu = U/Uy, s = —2/(2Lp), ando = 7/70, with Lp = 73/ K> (10 is the pulse du-
ration of the signal field) the typical dispersion length of the system. Note that we have taken
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Ly = Lp with Ly = 1/(WU?) the typical nonlinear length, and thU% = (1/7)y/ Ko/W
(typical Rabi frequency of the signal field in free space). Here the tilde abovand W
means taking the real park, = Re(K») andW = Re(W). A single-soliton solution reads

u(s, o) = 29sech[29(0 — 0 + 405)] exp [—2ido — 4i(§% — V¥?)s — idy], whered, a9, 6, and

¢ are real free parameters that determine the amplitude (also width), propagating velocity, ini-
tial position, and initial phase of the soliton, respectively. For simplicity, we take 1/2,

oo = 6 = ¢9 = 0. Then, when returning to original variables, we obtain the expression of the
signal fieldE; = e, F;, with

E, = 2 2405 )sech i t—i
7'0|I313| V W ToJl kTo T o v,

X exp { (KO - E) z —i(ws + Aw)t ] + c.c., (10)

hereK, = Re(Kj), with Ky = K (Aw)|aw—o.
We now give a set of system parameter for the formation of the optical soliton given above.
By takingQ, = 3.6 x 106 s71, 79 = 1.0 x 1077 s, Ay = 2.5 x 10" s}, A3 = 3.75 x 108
s~ 1, N = 2.0 x 10'° cm~3 and other parameters are the same as those given in the above text,
we obtain (evaluated aw = 0) Ko = (—3.23 + 0.097) cm™1, K; = (4.05 — 0.33i) x 1078
cmls, Ky = (=3.45+0.39i) x 107 cm™ &, W = (=5.38 + 0.167) x 10713 cm~! &2,
Uy =0.8x10°s71,andL 4 = 1/Im(K,) = 10.39 cm (typical absorption length). In particular,
the nonlinearity length of the system is given by

Ly =2.9cm, (11)

which means that to form the soliton very short fiber length is needed. With these parameters
we obtain }
V, = Re(V,) =8.17 x 10 *¢, (12)

which means that the optical soliton has an ultraslow propagating velocity.

The energy flux of the ultraslow optical soliton in the HC-PCF predicted by Eqg. (10) can
be calculated by using the Poynting vector integrated over the hollow core cross-section, i.e.,
P = [[dzdy(E, x H,) - e, wheree. is the unit vector in the propagation direction [40].

At leading order the corresponding magnetic field of the solitdp, is transverse and in the
e; x e, direction. Thus ife; = e, thenH; = e, H; with H; =~ negegcE,. After averaging

over the carrier-wave period, we obtath = Py« sech? Kt — z/f/g) /7—0}, whereP.x =

2e0cnei (RUo/|P13))? [[ 1¢(z, y)|?dzdy, with nes the efective refractive index of the signal
field, given in the Appendix A [i.e. Fig. (6) ]. Using the parameters given above, we obtain

Prax = 0.82x 1077 W, (13)

i.e., the optical soliton has extremely low generation power. We see that, \figyedi from
the optical solitons obtained in conventional solid-core optical fibers [38], the optical soliton
presented here has many attractive characters, including the very short formation distance [given
by (11)], the ultra slow propagation velocity [given by (12)], and the extremely low generation
power [given by (13)]. Physical reasons for these characters come from the enhanced EIT and
Kerr nonlinear fects in the resonant atomic gas confined in the core of the kagome-structured
HC-PCF.

Shown in Fig. 2(a) is the propagation of the ultraslow optical soliton \§H z, 7)70| as a
function of z /L p andt/7,. The comparison of waveshapes:at 0 and atz = 2L, is given
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Fig. 2.(a) The propagation of the ultraslow optical soliton, wi€ (z, 7)o | as a function ot /L
andt/7o (Lp is dispersion length ang, is pulse duration). (b) The comparison of waveshapes be-
tweenz = 0 (blue curve) and = 2L (red curve).

by Fig. 2(b). The solution is obtained by numerically solving Eq. (8) with all the imaginary
parts of the complex cdicients taken into account. In the simulation, the initial condition is
chosen a$2;(0,7)79 = 0.08sech(t/7p). One sees that, although due to the dissipatitece
(mainly contributed by the dephsin@f") there is a weak amplitude decay when propagating
to z = 2Lp, the soliton can keep its shape well for a propagation distance 2ipgo= 5.8 cm.

4. Storage and retrieval of the ultraslow weak-light solitons in kagome struc-
tured HC-PCF

4.1. Storage and retrieval of the optical soliton pulse in a small-core kagome-
structured HC-PCF

Although many schemes have been proposed and realized in the atomic gases in free space (see
Refs. [41-51] and references therein), the light memory using an atomic gas filled in HC-PCFs

is more desirable. The reasons are the following. First, guided-wave optics can confine optical
modes within a small area over a distance longer than that is possible Withctive optics

in free space, thus the light power required to obtain strong light-atom coupling can be largely
reduced, which can increase light memofiyaéency. Second, an integrated platform is easier

to interface with existing photonic architectures and also easier to scale up. Thus it is nature to
seek the possibility of the storage and retrieval of the ultraslow weak-light solitons obtained in
the last section.

The principle of EIT-based light memory is as follows [6]. When switching on the control
field, the signal pulse propagates in the atomic gas with nearly vanishing absorption; by slowly
switching df the control field the signal pulse disappears and gets stored in the atomic gas in the
form of atomic coherence; when the control field is switched on again the signal pulse appears
again. However, this principle was usually applied for linear optical pulses, which are not stable
during propagation and fiier serious deformation due to the dispersion/andiffraction. In
the following, we show that it is available to realize the memory of stable optical soliton pulses
in the kagome-structured HC-PCF obtained in the last section.

To this end, we numerically solve the MB equations (2) and (3) by taking the control field
to be adiabatically changed with time to realize the function of its switching on &ind'ee
switching-on and the switchingfioof the control field are modeled by the combination of two
hyperbolic tangent functions with the form

1 t — Tof 1 t—Ton
S e R [l NP
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Fig. 3. Numerical results on the storage and retrieval of an optical soliton pulse and a linear optical
pulse forrg = Ag = 13 um. (a) [(b)] Evolution of the dimensionless half Rabi frequef@y o | of

the signal field (atomic coherenée;) as a function of time for different propagation distaneein

the soliton regime. (c) [(d)] Evolution of the dimensionless half Rabi frequéfigyo| of the signal

field (atomic coherencéz;) as a function ot for differentz in the linear regime. In each panel, the
black, red, green, yellow, sky blue, and blue solid lines are:fd¥, 1, 2, 3, 4 and 5 cm, respectively;

the purple solid line represents the dimensionless half Rabi frequéhey| of the control field.

whereT®" andT°" are respectively the times of switchingtand switching-on of the control
field. The switching time of the control field i&, and the storage time of the signal pulse is
approximately given by’°" — T°F. We choosd’; = 0.57, T°T = 10.07, T°" = 20.079, with
70 = 1.0 x 10~7 s. Note that due to the light confinement in the transverse directions, the MB
equations[i.e. (2) and (3)] controlling the motion of the atoms filled in the HC-PCF fiezatit
from those in free space. In particular, the mode function y) appears in the cdgcients of
these equations, making the calculation of light memory more complicated than that in free
space.

We first consider the kagome-structured HC-PCF with a relatively small core rad{bsit
much larger than that of the bandgap-structured HC-PCF in Ref. [26]). In this case, the system
can be well approximated by a quasi-one-dimensional waveguide since the variation of the
electric field onz andy is much faster than that on, and hence the light memory can be
studied by using the Eq. (3) anffective Bloch equation (23) (see Appendixes B and D). Shown
in Fig. 3(a) is the result of storage and retrieval of an optical soliton pulsg fer Ag = 13 um,
where |Q,7| is taken as a function of the propagation distancand the evolution time.
The wave shape of the input signal pulse is taken as a hyperbolic secant one with a larger
amplitude for forming soliton, i.eQ" (t)7y = 0.1 sech{1.5¢/7). The black, red, green, yellow,
sky blue, and blue solid lines in each panel are for the soliton pulse propagating to the distance
2=0, 1, 2, 3, 4 and 5 cm, respectively; the purple solid line is for the dimensionless half Rabi
frequency|Q.7o| of the control field. From the figure, we see that in this soliton regime the
pulse is narrowed (i.e. the soliton is indeed formed) before its storage because of the balance
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between the dispersion and nonlinearity in the system. When the control field is switElaed o
t = T° = 10 79, the soliton pulse disappears, and then appears again when the control field is
switched on at = 7" = 20 7.

During the storage stage, the energy (information) of the optical soliton pulse is transferred
into the atomic gas. Fig. 3(b) shows the result of the atomic coheténgdeas a function ot
andt. One sees thaty; is nonzero during the switchfivof the control field. Since the signal
pulse is stored in the form of atomic cohereidge when the control field is switchedicand is
retained until the control field is switched on again, the atomic cohe@ncean be taken as
the intermediary for the memory of the signal pulse.

The dhiciencyn of the light memory can be described by the energy ratio between the re-
trieved pulse and the input pulse [52], i.e.,

e dt [ o, dady | ES" (. )2
- off - ,
ST e [, dedy | B (2,y,0)]2

whereE'* (z,y,t) = Es(2,y,2,t)|.—0 and ES"*(z,y,t) = E(z,y,2,t)|.=r., with L, the
fiber length. Our calculation gives that the optical pulse memfligiency in this soliton regime
isn = 86.3% for L, = 5cm. The fidelity of the light memory can be characterized by the
quantityn.J2, hereJ? is the overlap integral

(15)

2 _

T e [, dedy B2,y t + AT)E(z, y, )
T — 9 (16)

off . o0
—;O dt ffrgro d'rdy |Eén(xﬁ y? t)|2 ' fTé)n dt ffréro d'rdy |E§)Ht (I? y? t)|2

whereAT is the time interval between the peak of the input signal pfldeand the peak of
the retrieved signal pulse®"t. From Fig. 3(a) we see that the peak of the input signal pulse
(the black solid curve) is at = 0 and the peak of the retrieved signal pulse (the blue solid
curve) is att = 287, and henceAT = 287,. Using the formula (16) we obtaifi’> = 91.9%

for L, = 5cm. Thus, the fidelity of the optical soliton memoryijig? = 79.4%.

For comparison, the optical pulse memory in a linear regime is also calculated. Fig. 3(c)
shows the result of numerical simulation on the evolutiorj$dfry| as function ofz and+.

The input signal pulse is also taken as a hyperbolic secant function but with a much smaller
amplitude, i.e.Q*(t)7y = 0.01 sech{1.5¢t/7). The colored solid lines are far=0, 1, 2, 3, 4

and 5 cm, respectively. At beginning, the pulse profile for red line=(1cm) in Fig. 3(b) is
similar to that in Fig. 3(a) with almost same peak amplitude and pulse width. However, after
5cm propagation, the peak value of blue line<{ 5 cm) decreases .8 x 10* and its width

is more thar2.07y. The blue line in Fig. 3(a) still keeps its amplitude and pulse width. From
the figure, we see that the retrieved signal pulse is significantly broadened and its amplitude
decreases rapidly. Based on Egs. (15) and (16), we obtain the mefhicigney and fidelity of

the linear optical pulse, respectively given hy= 79.8% andnJ? = 62.9% for L, = 5cm,

lower than the optical soliton memory shown in Fig. 3(a). The atomic coheténgleof the

linear optical pulse during the storage and retrieval is presented in Fig. 3(d).

For a given storage time, the memofffigency of the optical soliton pulse depends on the
fiber lengthL, and the fiber core radiug when the other system parameters are fixed. Fig. 4
shows the result of as a function of the fiber length, for the storage tim@o» — T°% = 107.

The blue, red and green solid curves in the figure are respectively faking 13, 15, and7 ym

(the pitchA is fixed to bel3 pm). From the figure we can obtain the following conclusions:
(i) For any core radiusy, the memory fficiencyn grows rapidly in the small . region (i.e. the
region on the left side of its peak value), thenlasincreases it reaches to the peak value, and
finally drops down slowly in the largé, region (i.e. the region on the right side of the peak
value); (ii) In the large (small]L, region, the smaller the core raditgthe higher (lower) the
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Fig. 4. Memory dficiency n of the optical soliton pulse as a function of the fiber length Solid

lines are fitted curves based on numerical calculation. The blue, red and green solid lines are for the
fiber core radius =13, 15 and 17:m, respectively. Dashed-dotted lines for each core radius are the
memory dficiencies when a microwave field is coupled to the two lower atomic level§Ij.@nd|2)

in Fig. 1(b) ].

memory dficiencyn. The physical reasons are the following. Since the signal pulse in the fiber
with a larger core radius has a smaller group velocity, in the smatlegion (where damping

due to the spontaneous emission and dephasing is negligible) the compression of the signal
pulse is more #ective and hence the memorifieiency for the large-core fiber is larger than

that of the small-core fiber. However, in the lafgeregion (where damping plays a significant
role), the attenuation of the signal pulse in the small-core fiber is relatively smaller than in the
large-core fiber and thus the memoffi@ency is higher for the small-core fiber. Consequently,
one can acquire a large memotfiegiency of the optical soliton pulse by suitably selecting the
core radius and the fiber length.

The main factor fiecting the light memoryféciency and fidelity is the value of the dephasing
ratewgfp. To improve the fficiency and fidelity, one can employ a microwave field to couple
the two lower atomic levels [i.e1) and|2) in Fig. 1(b)]. The microwave field is applied within
the time interval in which the control field is switcheé,owhich can provide a gain to the
atomic coherences; [53]. We have carried out a numerical simulation on the memory of an
optical soliton pulse by adding such a microwave field into the system, with the result shown by
the dashed-dotted lines in Fig. 4. We see that by using the microwave field the soliton memory
efficiency can be increased B9%, which is valid for the all values of the core-radius

4.2. Storage and retrieval of the optical soliton pulse for a large-core kagome-
structured HC-PCF

As pointed out previously, a large-core fiber is desirable to fill more atoms in its core to obtain
a strong light-atom coupling in the system. Recently, the core ragio$ kagome-structured
HC-PCF has been extended to/a6 [54, 55], which encourages us to consider the memory of
optical soliton pulse with such large-core fiber.

To this end, we make a numerical simulation to investigate the memory of optical soliton
pulse in a kagome-structured HC-PCF with the core radius- 50 um and the pitch\y =
25 um. Note that in this situation the distribution range of the mode functieny) is relatively
large, the fective Bloch equation [i.e. Eq. (23)] is not a good approximation. Nevertheless, the
(reduced) Maxwell equation (3) is still valid since the distribution ranggofy) is still much
smaller than the spatial length of the signal pulse in the propagation)dé&ection [56]. Thus
the simulation is carried out based on the Eqs. (3) and (19).

Shown in Fig. 5(a) is the result of the storage and retrieval of an optical soliton pulse in the
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Fig. 5. (a) Storage and retrieval of the optical soliton pulse in the HC-PCF with core raglis50

pum and pitchAg = 25um. The subplots from (i) to (v) give the intensity distributi¢fs|? of

the soliton pulse in théz, y) plane when propagating to the distance= 0, 1, 2.5, 4, and 5cm,
respectivelyt = 0, 3.579, 1579, 2570, and28.579 shown respectively in (i) to (v) are the times when
soliton’s peak arrives at the positioas= 0, 1, 2.5, 4, and 5 cm, respectively. (b) Storage and retrieval
of a linear optical pulse in the same fiber.

large-core fiber. The switching on and of the control field is still modeled by the function

(14). Panels (i) to (v) in the figure give the electric-field intensity distributior? of the soliton

pulse in the(z, y) plane for the soliton propagating to the distance 0, 1, 2.5, 4, and 5¢cm,
respectivelyt = 0, 3.579, 1579, 2579, and28.579 shown respectively in (i) to (v) are the times
when the peak of the soliton arrives at the positiens 0, 1, 2.5, 4, and 5 cm, respectively. We

see that the optical soliton pulse can still be stored and retrieved in the system and can keep
well its shape during the storage process. Tifieiency and fidelity of the light memory in the
present case arg= 77.6% andnJ? = 71.2% for L, = 5cm, respectively.

For comparison, Fig. 5(b) shows the storage and retrieval of a linear optical pulse in the same
large-core fiber. One sees that during the storage process the linear optical pulse undergoes a
significant decrease of the amplitude. By the formulas (15) and (16) one obtains small mem-
ory eficiency () = 63.8%) and small fidelity 4.J? = 50.3%), lower than the optical soliton
memory shown in Fig. 5(a).

5. Discussion and summary

From the results described above, we see that the optical soliton pulses in the kagome-structured
HC-PCF can not only be robust during propagation, but also be stored and retrieved with rela-
tively higher dficiency and fidelity.

We note that there are two types of HC-PCFs, i.e., bandgap-structured HC-PCFs and kagome-
structured HC-PCFs [15-17,57-59]. The bandgap-structured HC-PCFs have a true bandgap for
eigenfrequency, which can be taken as a guidance mechanism preventing light from propagating
in fibre cladding and confining the light within the fiber core. The EIT and related phenomena
based on such HC-PCFs were demonstrated in many previous studies (see, e.g., Refs. [18-25]).
The kagome-structured HC-PCFs do not possess a bandgap, so the light is guid@erbgtdi
mechanisms (e.g., anti-resonant reflection) [15]. The EIT and related Raman memory based on
such HC-PCFs were also reported [33, 60, 61].
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Our work presented above isfidrent from that considered in Ref. [26], where the authors
employed a bandgap-structured HC-PCF with a small core radius and did not discuss the storage
and retrieval of optical solitons. In contrast, in our work not only the formation and propagation
but also the storage and retrieval of the optical solitons are investigated, both are based on the
kagome HC-PCF. In addition, our work is also at variance with those studied in Refs. [18-25,33,
60, 61], where no optical solitons and their storage and retrieval were studied. We stress that the
light memory using the atomic gas filling into the kagome HC-PCF has higheieacy and
fidelity than those using an atomic gas in free space. For comparison, consider the same cesium
atomic gas (used above) works in a free space with the same contr@lfidithe input signal
pulse has the transverse mode prafile, y) = Jo(kr), the characteristic fraction length of
the system readEp;; = v37rg/\s. If ro = 13 um (ro = 50 um), one has.p;; = 0.1cm
(Lpir = 1.6 cm), which is much shorter than the medium length (5 cm) and thus ffraction
effect in the system is very significant. Due to théfrdiction, the signal pulse spreads fast
in the transverse directions and its amplitude decreases rapidly. As a result, one obtains, for
ro = 13 um (rp = 50 um), the light memory ficiency and fidelity are respectively given by
n = 0.997% andn.J? = 0.786% (n = 16.65% andn.J? = 14.39%), which are much lower
than those obtained by using the kagome-structured HC-PCF considered above.

Note that in principle one can take bandgap-structured HC-PCFs [15-17] for generating the
ultraslow weak-light soliton pulses and for realizing their storage and retrieval. However, the
kagome-structured HC-PCFs, as indicated in Sec. 1, are better for implementing such tasks. For
instance, using the core radits = 5 zm and the atomic density” = 3.0 x 10° cm~3 in the
bandgap-structured HC-PCF given in Ref. [21], under the same control field one obtains the
nonlinear co@ficient describing Kerrféect [defined by (9))V = (5.05+ 0.317) x 10716 cm™!

s and hence the nonlinearity length (describing the formation distance of the optical solitons)
Ly = 8.62cm. Nevertheless, using the core radiys= 13 um andA = 1.1 x 10 cm =3 in

the kagome-structured HC-PCF given in Ref. [33], one obtHins- (2.17 + 0.44i) x 10714

cm~! 2 and hencelLy = 0.3cm. Thus, comparing with the bandgap-structured HC-PCF,
the Kerr dfect in the kagome-structured HC-PCF can be made much larger, and hence the
formation distance of the optical soliton pulses can be made much smaller, which is desirable
for generating the solitons with a lower power and a smaller system size. In addition, due to the
longerL y and larger dephasing caused by larger transverse transit time, the mefivieyney

of the soliton storage in the bandgap-structured HC-PCF is less2#fanmuch lower than

that in the kagome-structured HC-PCF {7%). Due to these reasons, the kagome-structured
HC-PCF is chosen in our model. We expect that the result and method reported herein will be
useful not only for the understanding of nonlinear optical property of gas-filled HC PCFs, but
also for practical applications for manipulating optical information at weak-light level.

In summary, in this work we have investigated the formation and propagation of ultraslow
weak-light solitons and their memory in cold atomic gas filled in a kagome-structured HC-PCF
via EIT. We have shown that, due to the strong light-atom coupling provided by the transverse
confinement of the HC-PCF, the EIT and thus the Kerr nonlinearity of such system can be
largely enhanced. As a result, stable optical solitons with ultralow generation power down to
nW and the propagation velocity slow 105 ¢ can be realized. We have demonstrated that
the optical solitons obtained can not only be robust during propagation, but also be stored and
retrieved with high memoryficiency and fidelity through the switchingf@nd on of a control
laser field. The energy to generate soliton signals in HC-PCF is very low thus it is possible
to realize such light memory in weak nonlinear regime under single photon level. The results
reported herein are promising for practical applications of optical information processing and
transmission based on the ultraslow weak-light solitons and kagome-structured HC-PCFs.



Research Article

Optics EXPRESS

Fundamental mode

09995#"’_?:?:

—_———

—_—-——
- —

0.999} - _Firsthigher-ordermode ,,,,,

—

neff

-
-

—_— -

-

—

0.9985¢~~ —=ro=17um —ro=17m
-=ro=15um —ro=15um
-=ro=13um —ro=13um

32 33 34 35 36 37 38 38 4.0
w (s™) x10"

0.998

Fig. 6. Numerical result for the féective refractive indexa.g of the kagome-structured HC-PCF

as a function of frequency with pitch Ag = 13 pm and three dferent core radiuso. The solid
(dashed) line is for the fundamental (first higher-order) mode; the blue, red, and green colors are for
ro = 13 pm, ro = 15 um, o = 17 pm, respectively.

Appendix
A. Electric-field mode functions of the kagome-structured HC-PCF

When in the absence of the atomic gas, the electric fietd the kagome-structured HC-PCF
satisfies the Maxwell equation’E — (1/c¢?)9%E/0t? = [1/(eoc?)]0*P/0t2, hereP is electric
polarization intensity. Assuming that the frequencylois far from the resonant frequency
of the HC-PCF material, the electric polarization intensity has the fPom e xnost (2, y)E,
wherexnost (x, y) is the electric susceptibility of the HC-PCF. Then the Maxwell equation is
simplified into V2E — (n?/c?)0’E/0t? = 0, with n = n(z,y) = [1 + Ynost(,y)]*/? the
refractive index of the HC-PCF without the atomic gas.

The general solution of the Maxwell equation can be written as

E=) ) en(w)law)gala,y) el 4 cc, (17)

wheree,, £, 9. (x, y), andg,, are the polarization unit vector, mode amplitude, eigenfunction,
and propagation constant for the mode with indeXhe eigenfunction,, satisfies the equation

2 2 2 2
(% + aa—yQ) Go(T,y) + %qa(%y) = Ba(w)ga(z,y). (18)
Since an analytical solution of Eq. (18) is not available, we resort a humerical simulation.
Shown in Fig. 6 is the numerical result for theztive refractive index.q(w) of the kagome-
structured HC-PCF as a function of frequencyThe solid (dashed) line is for the fundamental
(first higher-order) mode; the blue, red, and green colors areyfes 13 um, rg = 15 um,
ro = 17 um, respectively. In the calculation, we assume the fiber is made of silica and the pitch
Ao (defined by the distance between two adjacent holes) of the HC-PCF [see Fig. 1(a)] is fixed
to beAy = 13 um. Form the figure we see that the first higher-order mode has a |digetiee
refractive index than the fundamental mode. Based onftieeteve refractive indexes obtained
we can find the corresponding eigenfunctions.

We are interested in the fundamental mode, whose electric-field distribution in the radial
direction (i.e. as a function of = /22 + y2) is shown by the blue solid line in Fig. 1(c).
When obtaining the figure;y, = Ay = 13 um is chosen. The shape of the fundamental mode
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can be fitted well by the zeroth-order Bessel functig(2.405r/r¢) [the red dashed curve in

Fig. 1(c)] [27]. One sees that the fundamental mode is well confined in the fiber core, as shown
in the inset of Fig. 1(c).

B. Equations of motion for the density-matrix elements

The equation of motion for the density-matrix elemenjsreads [32]

.0 . . . .

Zagll - ZF13033 “I‘C (x,y)QSO'gl — C(xvy)QsU31 — O7 (19a)

.0 . . . .

i5022 = iTa3033 + C* (2, y)Qiose — ((z,y)Qe05y = 0, (19b)

.0 ) . ) i} . .

i+ iTa0ss = € (o)L + (09) ey = € (o)

()i, =0, (190)

0

(la + d21> 021 — <(CL‘,ZJ)QSU§2 + <*(x7y)QZU31 =0, (19d)
0

<z& + d31> o31 — ((x,y)Qs (033 — 011) + ((2,y)Qeo21 = 0, (19¢)
0

< ot d32> 032 = (@, y)Qe(033 = 022) + ([, )05, = 0, (19f)

whered;; = Aj — Ay + i1, Az = ws — w31 andAg = wig — (we. — w;) are respectively one-
and two-photon detuings, withy; = (E; — E;)/h with E; the eigenenergy of the stgtg. The
dephasing rates are definedhgs= (I'; +I'1)/2 + 7} dep with Lj=> 5 <k, L'1j representing

the rate of spontaneous emission of the statdo all lower energy statel$), andydc" being
the dephasing rate reflecting the loss of phase coherence bdtiveel|/).
Under the slowly varying envelope approximation, the equation of motiof: foeads

0 n? 0
i¢(x, y)((%'i‘%at)ﬂ + k13031 = 0, (20)

with n? = 1 + ynost (7, y) the refractive index of the HC-PCF when the atomic gas is absent.
When the spatial distribution range ¢fz, y) is much smaller than in the spatial length of the
signal pulse in the propagation (i.8. direction, by using the definitioas; = &31((z,y) and

vy = [[1¢(z,9)|*Y(z,y)dzdy/ [[ |¢(x,y)|*dzdy, Eq. (20) is reduced into Eq. (3) given in
the main text.

C. Second-order approximation solution

The second-order approximation solution reatfs = a})i 2~ Fe'?, o} = a})i 2 Fe®,

0\? = a2 |FPe~22 (j=1,2,3), o5y = a3 [F|?e 2%, with a= e *Im[K (Aw)|aw—o]
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and
P, — P,
aﬁ) = ! |<($7y)|2’ (Zla)
—il13[C (@, y)2e|? (d;z d_gg)
2 _ T (2)
o) — G|§(a:,y)'| LRELI T (21b)
iI'13
* QF(2A
a§21) _ _C ($7y> c( DC’; + do1 + dgl)c(x,y)7 (21C)
Aw + do1)? + ¢ (2, y)Qe]?
ggl) _ ( 21) D2| ( ) | C(a?,y), (21d)
z,Y) e z,
ag) _ ¢( dy) [|<(Dil)| (agl) +2a( ))] (21e)
32

where Py = [ila3 — 2[C(2,y)Q|? (1/ds2 — 1/d5)]G, P = iT13|¢(2, y)Qe|*[1/(Dd55) —
1/(D*ds2)], with G = (Aw + d3,)/D* — (Aw + d21)/D and D = [¢(x,y)Q]* — (Aw +
dgl)(Aw + d31).

D. Effective Bloch equation

Making the transformation [40]

> dxd y QUjj Y, ,t .
e e e

I dady|C(z, ) Poa(x, y, 2, 1)

G21(2,t) = ; (22b)
J2o dedyl¢(z, y)[?
G31(32) (2, ) C(7,y) = 031(32) (T, Y, 2, 1), (22c)
Eq. (19) is reduced into thdfective Bloch equation
. 0 ~ . ~ * ~ ~ %
1&011 — iI'13033 + p§ls031 — p§lsa3; =0, (23a)
0 ~ . ~ * ~ ~ %
iaO’QQ — il'23033 + p§2032 — p§le035 = 0, (23b)
a ~ ~ % * ~ ~ %
1&0'33 +il3033 — pQaca1 + pQs0s; — pQLG32 + pQlebie = 0, (23c)
0 ~ ~ ¥
(la + d21> Go1 — pP8lsO39 + p§2531 = 0, (23d)
0 . . N ~
25+d31 G31 — Q(F33 — 011) + Qb1 =0, (23e)
0 - ~ - ~
Z§+d32 G32 — Qe(F33 — F22) + Q65 =0, (23f)

with p = [%_dady|((z,y)|*/ [ dzdy|((z,y)|?, describing the confinement of the HC-PCF
in the transverse directions.
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