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Abstract: We investigate the formation and propagation of ultraslow weak-light solitons and
their memory in the atomic gas filled in a kagome-structured hollow-core photonic crystal fiber
(HC-PCF) via electromagnetically induced transparency (EIT). We show that, due to the strong
light-atom coupling contributed by the transverse confinement of the HC-PCF, the EIT and
hence the optical Kerr nonlinearity of the system can be largely enhanced, and hence optical
solitons with very short formation distance, ultraslow propagation velocity, and extremely low
generation power can be realized. We also show that the optical solitons obtained can not only
be robust during propagation, but also be stored and retrieved with high efficiency through
the switching off and on of a control laser field. The results reported herein are promising for
practical applications of all-optical information processing and transmission via the ultraslow
weak-light solitons and the kagome-structured HC-PCF.
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1. Introduction

In recent years, tremendous efforts have been paid to the investigation on optical pulse memory,
which is important for the realization of fast optical information processing. One of the main
techniques to realize optical pulse memory is the utilization of electromagnetically induced
transparency (EIT) [1,2], an interesting quantum interference effect typically occurring in three-
level atomic systems. EIT can be used not only to cancel optical absorption in resonant quantum
systems, but also to bring many novel nonlinear optical effects at weak-light level, including the
production of weak-light solitons [3–5]. Based on the dark-state polariton [6] inherent in EIT
systems, a signal optical mode can be mapped into an atomic mode, stored temporarily, and
then retrieved from atoms by switching off and on of a control laser field [7–10].

However, nearly all researches reported up to now on the storage and retrieval of optical
pulses via EIT are limited within linear optical regime. Due to the significant dispersion inherent
in resonant systems, linear optical pulses in EIT-based atomic ensembles are not stable, resulting
in a serious deformation for retrieved pulses and hence the loss of optical information. For
practical applications of light memory, it is desirable to obtain a signal pulse that is robust
not only during propagation, but also during storage and retrieval, and hence to acquire high
efficiency and fidelity.

Recently, the EIT-based memory has been generalized to weak nonlinear optical regime,
where the storage and retrieval of optical soliton pulses have been analyzed [11]. Neverthe-
less, because the optical pulses and atomic gases considered in Refs. [11] work in free space,
the diffraction effect in those systems can not be neglected, which makes the optical soliton
pulses unstable during propagation as well as during storage and retrieval. In addition, a larger
power is needed for generating the optical soliton pulses in those systems since the coupling
between light and atoms is weak in free space.

In this article, we propose a scheme for the formation, propagation, storage and retrieval of
the optical soliton pulses in an atomic gas filled in a kagome-structured hollow-core photonic
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crystal fiber (HC-PCF) [12–16] via EIT. Because of the transverse confinement provided by the
fiber, the diffraction effect of the optical pulses is completely eliminated. We show that the EIT
and hence the Kerr nonlinearity may be largely enhanced, which can be used to balance the
dispersion and hence supports the production of the optical soliton pulses in the system. We
prove that the optical soliton pulses obtained with such a scheme have very short formation
distance (< 2 cm), ultraslow propagation velocity (∼ 10−5 c), and extremely low generation
power (∼nW); in addition, they are robust during propagation and can be stored and retrieved
with high efficiency through the switching on and off of a control laser field. The results re-
ported here are promising for practical applications of all-optical information processing and
transmission.

Before preceding, we note that bandgap-structured HC-PCFs [15–17] can also be used to per-
form EIT (see Refs. [18–25]), and to form an optical soliton pulse as shown recently by Facão
et al. [26] where the fiber-core diameter is less than4µm. However, the use of the kagome-
structured HC-PCF possesses many advantages, including: (i) The kagome-structured HC-PCF
has a large core diameter (26µm-100µm in our scheme), which is easier not only for fabrica-
tion and but also for loading more atoms in the fiber core; (ii) Because of the larger atomic
number in the kagome-structured HC-PCF, the coupling between the light field and the atomic
gas is stronger, which is desirable for forming optical solitons within a shorter distance and
with a lower generation power. (iii) Comparing with bandgap-structured HC-PCFs, the kagome-
structured HC-PCF has a larger transverse transit time for the atoms in the fiber core, which
admits a smaller dephasing and hence a higher efficiency for the storage and retrieval of the
optical soliton pulses (see a further discussion in Sec. 5).

The rest of the article is arranged as follows. In Sec. II, the theoretical model is described. In
Sec. III, the formation and propagation of ultraslow weak-light solitons is investigated. In Sec. 4,
the storage and retrieval of optical soliton pulses are studied. Finally, in Sec. IV a discussion
and a summary on the main results obtained in this work is given.

2. Model

We consider a pulsed signal laser fieldEs and a continuous-wave (CW) control laser fieldEc,
both are guided inside a kagome-structured HC-PCF with (hollow) core radiusr0 and pitch
Λ0 [Fig. 1(a)]. The core of the HC-PCF is filled with an atomic gas with a lambda-type level
configuration [Fig. 1(b)]. In the absence of the atomic gas, the HC-PCF allows many eigen-
modes of electric fieldE with the formeα qα(x, y) exp{i[βα(ω)z − ωt]}, hereeα, qα(x, y),
andβα are the polarization unit vector, eigenfunction, and propagation constant for the mode
with indexα (for a simple introduction of the eigenmodes in the kagome-structured HC-PCF,
see Appendix A). In the present study, we are interested in the fundamental mode of the HC-
PCF made of silica. The blue solid line in Fig. 1(c) is the numerical result of the electric-field
distribution in the radius direction (withr ≡

√

x2 + y2 the radius coordinate of the system) of
the fundamental mode forr0 = Λ0 = 13µm when the atomic gas is absent. The shape of the
fundamental mode can be fitted well by the zeroth-order Bessel function [27] [the red dashed
curve in Fig. 1(c)]. One sees that the fundamental mode is well confined in the fiber core, as
shown in the inset of Fig. 1(c). In Fig 1(b),|1〉, |2〉, and |3〉 are respectively the metastable,
ground, and excited states,∆3 and∆2 are respectively one- and two-photon detunings,Γjl

(j = 1, 2; l = 3) denotes the spontaneous emission rate from|l〉 to |j〉; ωs andΩs [ωc and
Ωc] are respectively the angular and half Rabi frequencies of the signal (control) field, which
is coupled to the transition|1〉 ↔ |3〉 (|2〉 ↔ |3〉). Both of the signal and control fields be-
long to the fundamental mode of the HC-PCF and propagate alongz direction, with the form

E = Es + Ec =
∑

l=s,c el
√

~ωl

2ǫ0V eff

l

El(z, t)ql(x, y) ei[βlz−ωlt] + c.c., whereβl ≡ β(ωl),

V eff
l ≡ Lz

∫∫

|ql(x, y)|2dxdy is the effective mode volume for the modeω = ωl, Lz is the
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Fig. 1. (a) Kagome-structured HC-PCF with core radiusr0 and pitchΛ0. (b) Atoms of a lambda-
type three-level configuration are filled within the hollow core of the fiber, and initially prepared in
the metastable|1〉 for suppressing four-wave mixing effect. (c) Numerical result of the electric-field
distribution of the normalized fundamental-mode amplitude as a function of radius coordinater in the
HC-PCF made of silica when the atoms are absent. (d) Absorption spectrum Im(K) of the signal field
as a function of∆ω for different core radiusr0. The red, blue and green lines are forr0 = 13 µm,
17µm, and100µm, respectively. The other notations in the figure are explained in the text.

fiber length, the subscripts (c) denotes the signal (control) field, and c.c. represents complex
conjugate.

We choose a cesium atomic gas with the energy levels selected as|1〉 = |62S1/2, F = 4〉,
|2〉 = |62S1/2, F = 3〉, and|3〉 = |62P3/2, F = 4〉. For such level configuration the wave-
lengths of the signal and control fields are approximately equal (i.e.λs ≈ λc = 852nm) [28],
which meansqc(x, y) ≈ qs(x, y) ≡ q(x, y). For an analytical description, in the following
the fundamental mode is approximated by the zero-order Bessel functionq(x, y) = J0(kr)
when r ≤ r0 and q(x, y) = 0 when r > r0 with k ≈ 2.405/r0 [27], which gives
V eff
c ≈ V eff

s = πr20J
2
1 (kr0)Lz ≡ V eff . In order to have a quantitative discussion on light-

beam confinement effect in the HC-PCF, following the approach in Refs. [29, 30] we define a
reference mode volume of free space, i.e.V ref = πR2

⊥Lz. The quantityR⊥ (determined by
input condition) is the transverse radius of laser beams in free space, introduced here for illus-
trating the confinement effect due to the HC-PCF by comparing the EIT in the HC-PCF and
the EIT in free space. Note that experimentallyR⊥ is usually large (e.g.,R⊥ = 100µm [31],
which is chosen in the following discussion). Then the electric field can be expressed as

E =
∑

l=s,c

el
R⊥

r0J1(kr0)
El(z, t)ql(x, y) ei[βlz−ωlt] + c.c.. (1)
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When the atomic gas is filled into the fiber, under electric-dipole and rotating-wave approxima-
tions, the Hamiltonian of the system in the interaction picture readsĤint = −~

∑3
j=1 ∆j |j〉〈j|−

~[ζ(x, y)Ωs|1〉〈3| + ζ(x, y)Ωc|2〉〈3| + h.c.], whereζ(x, y) ≡ R⊥

r0J1(kr0)
q(x, y), andΩs =

|p13|Es/~ (Ωc = |p23|Ec/~) is the half Rabi frequency of the signal (control) field, withpjl

the electric-dipole moment associated with the state|j〉 and the state|l〉. The equation of mo-
tion for the density matrixσ in the interaction picture reads [32]

i~

(

∂

∂t
+ Γ

)

σ =
[

Ĥint, σ
]

, (2)

whereσ is a3 × 3 density matrix with matrix elementsσjl ≡ |j〉〈l|, Γ is a 3 × 3 relaxation
matrix denoting the spontaneous emission and dephasing. The explicit expression of Eq. (2) is
presented in Appendix B.

The equation of motion forΩs can be obtained by the Maxwell equation∇2E −
(1/c2)∂2E/∂t2 = [1/(ǫ0c

2)]∂2Pp/∂t
2, with the electric polarization intensity given byPp =

Phost +Np13σ31 exp[i(βsz−ωst)] + c.c., whereN is the atomic density,Phost = ǫ0χhostE is
the electric polarization intensity, withχhost = χhost(x, y) is the susceptibility of HC-PCF in
the absence of the atomic gas. According to the expression of the electric field [i.e. the Eq. (1)]
and using Eq. (18), the Maxwell equation under a slowly varying envelope approximation is
reduced to

i

(

∂

∂z
+

〈n2〉
cneff

∂

∂t

)

Ωs + κ13〈σ̃31〉 = 0, (3)

wheren ≡ [1 + χhost(x, y)]
1/2 is the refractive index [χhost(x, y) is the electric susceptibil-

ity] of the HC-PCF in the absence of the atomic gas,κ13 ≡ Nωs|p13|2/(2~ǫ0cneff) is light-
atom coupling coefficient withneff the effective refractive index. In Eq. (3) we have defined
σ31 = σ̃31ζ(x, y) and〈ψ〉 =

∫∫

|ζ(x, y)|2ψ(x, y)dxdy/
∫∫

|ζ(x, y)|2dxdy, withψ an arbitrary
function ofx andy (for the detailed derivation of Eq. (3), see Appendix A). We see that, the
diffraction effect of the signal field is effectively canceled due to the transverse (mode) confine-
ment of the HC-PCF.

For simplicity, the following assumptions are made for our theoretical calculations presented
below: (i) To suppress Doppler effect, the atoms are assumed to be cooled to low temperature
and the signal and the control fields are injected with opposite directions. (ii) To reduce the
dephasing rate caused by the adsorption of atoms to the inner walls of the fiber core, the inner
walls are coated with some materials, or a light-induced atomic desorption process is used to
release the atoms into the center of fiber core, or a dipole trap along the fiber axis is employed
to attract the atoms away from the inner walls of the fiber. (iii) The atoms are initially popu-
lated on the metastable state|1〉 by an optical pumping to suppress four-wave mixing effect.
These assumptions are realistic because related experiments have already been done in recent
years [19,21,33].

3. Ultraslow weak-light solitons in the HC-PCF

3.1. Linear dispersion relation and EIT enhancement

We first solve the Maxwell-Bloch (MB) equations (2) and (3) in the linear regime and discuss
the linear property of the system. The steady state before the signal field opens isσ11 = 1
and all otherσjl are zero. When the signal field is switched on but very weak, the system will
evolve into a time-dependent state and the solution of the MB equations (2) and (3) have the
solutionσ11 = 1, σj1 ∼ exp(iθ) (j = 2, 3), Ωs ∼ exp(iθ), andσ22 = σ33 = σ32 = 0, with
θ = K(∆ω)z −∆ωt [34]. The linear dispersion relation is given by

K =
∆ω

c

〈n2〉
neff

+ κ13

〈 (∆ω + d21)

|ζ(x, y)Ωc|2 − (∆ω + d21)(∆ω + d31)

〉

, (4)
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here the definitions of the parametersd21 andd31 have been given in Appendix B. Because the
signal field is resonant with the atoms in the fiber, in usual cases one expects that a significant
absorption will happen. However, the absorption can be made very low in the present system.
Fig. 1(d) shows the calculation result on the imaginary part ofK, i.e. Im(K), as a function
of ∆ω, where the blue, red and green lines are respectively for the core radiusr0 = 13µm,
17µm, and100µm. From Fig. 1(d) we see that: (i) A transparency window (i.e., the dip near
∆ω = 0) is opened, which is due to the quantum interference (i.e. EIT) effect induced by the
control field; (ii) For different core radiusr0, the width of the transparency window (called EIT
transparency window) is different. The smaller the value ofr0, the wider the EIT transparency
window, which means that the EIT effect is enhanced when the core radiusr0 is reduced. The
physical reason of the enhancement of EIT effect is due to the existence of the (geometrical)
confinement effect in the kagome-structured HC-PCF. By the confinement, the control fieldΩc

has an enhanced factor(R⊥/r0)[J1(kr0)]
−1, which leads to a larger EIT transparency window

for smallerr0. For instance, the transparency window is very wide forr0 = 13µm, which will
be used in our following calculations.

When plotting Fig. 1(d), the system parameters are chosen asΩc = 1.0 × 107 s−1, ∆2 =
∆3 = 0, |p13| ≃ |p23| = 3.8 × 10−27 C · cm [28], N = 2.0 × 1010 cm−3, R⊥ = 100 µm,
Γ3 ≃ 2γ31 = π × 5.23 MHz, γ31 = γ32. Note that the ground-state dephasing rateγdep21 for
the atoms filled in the HC-PCF may be caused by many physical factors, widely discussed in
literature (see, e.g., [18, 20, 25, 35–37]). Here we takeγdep21 = γ21 ≃ 2π × 0.05 MHz in our
numerical calculations carried out here and below, which is slightly larger than that given in the
recent experiment [25] in order to account for the factors causing the dephasing not included in
our model.

3.2. Nonlinear envelope equation

The approach above is valid not only for CW but also for pulsed signal fields. However, vanish-
ing one- and two-photon detunings assumed there usually cannot be satisfied in reality, which
will result in a dispersion effect in the system and hence the spreading of the signal pulse. In
particular, in light memory what we need is to store and retrieve a signal pulse within a finite
time duration. The sideband components of the pulse are detuned from the energy-level differ-
ence of the related transition (|1〉 to |3〉 in the present system), which brings a non-negligible
dispersion effect to the system. Such effect brings not only a deformation of the signal pulse but
also a reduction of the quality of light memory in the system.

In order to suppress the dispersion effect and obtain a shape-preserving signal pulse useful
for light memory, one can exploit the Kerr effect of the system to balance the dispersion [3, 4].
In fact, the Kerr nonlinearity of the system can be largely enhanced in the present system by
both the EIT effect and the confinement effect of the HC-PCF, as shown below.

To this end, based on the MB equations (2) and (3) we derive a nonlinear envelope equation
describing the nonlinear evolution of the signal field by using the method developed in Ref. [4].
Taking the asymptotic expansionσjk =

∑∞

l=0 ǫ
lσ

(l)
jk (j, k =1, 2, 3;σ(0)

jk = δj1δk1), andΩs =
∑∞

l=1 ǫ
lΩ

(l)
s . Hereǫ is a dimensionless small parameter characterizing the typical amplitude of

the signal pulse. All the quantities on the right-hand side of the expansion are considered as
functions of the multi-scale variableszl = ǫlz (l = 0, 1, 2, · · · ) andtl = ǫlt (l = 0, 1, 2, · · · ).
Substituting the expansions into the Eqs. (2) and (3) and comparing the coefficients ofǫm (m=1,
2, 3), we obtain a set of linear but inhomogeneous equations which can be solved order by order.

The first-order (m = 1) solution is given by

Ω(1)
s = F exp(iθ), (5a)

σ
(1)
j1 =

δj3(∆ω+d21)−δj2ζ∗(x, y)Ω∗
c

|ζ(x, y)Ωc|2 − (∆ω+d21)(∆ω + d31)
ζ(x, y)Feiθ, (j = 2, 3) (5b)
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with all otherσ(1)
jl = 0. Hereθ ≡ K(∆ω)z0 − ∆ωt0, with F a yet to be determined en-

velope function depending on the indicated slow variablest1, z1, and z2 andK(∆ω) the
same as (4). At the second order (m = 2), we obtain the solvability condition i[∂F/∂z1 +
(∂K/∂∆ω)∂F/∂t1] = 0, which shows that the signal-pulse envelopeF travels with the group
velocityVg ≡ K−1

1 = (∂K/∂∆ω)−1, given by

Vg =

{

1

c

〈

n2
〉

neff
+ κ13

〈

(∆ω + d21)
2 + |ζ(x, y)Ωc|2

[|ζ(x, y)Ωc|2 − (∆ω + d21)(∆ω + d31)]2

〉

}−1

. (6)

The explicit expressions of the second-order approximation solutions are given in Appendix C.
With the above results we go to the third order (m = 3). A solvability condition in this order

yields the equation for the signal-pulse envelopei∂F/∂z2 − (1/2)[∂2K/∂∆ω2] ∂2F/∂t21 −
W |F |2Fe−2āz2 = 0, hereK2 ≡ ∂2K/∂∆ω2 describes the second-order dispersion, and the
nonlinear coefficient

W = −κ13
〈

ζ(x, y)Ωca
∗(2)
32 + (∆ω + d21)(2a

(2)
11 + a

(2)
22 )

|ζ(x, y)Ωc|2 − (∆ω + d21)(∆ω + d31)

〉

(7)

is related to optical Kerr effect describing the self-phase modulation of the signal field.
Combining the solvability conditions in all orders and returning to the original variables, we

obtain the equation

i
∂U

∂z
− K2

2

∂2U

∂τ2
−W |U |2U = −iaU, (8)

whereτ = t − z/Vg, U = ǫFe−āz2 , anda = ǫ2ā, with the definition ofā presented in
Appendix C. Note that Eq. (8) is valid for∆ω ≪ ωs. Since we are interested in the evolution of
the signal pulse at the center frequencyωs, in the calculations given below all the coefficients
in Eq. (8) will be evaluated at∆ω = 0.

3.3. Ultraslow weak-light solitons

The third-order nonlinear optical susceptibilityχ(3) of the signal field is proportional to the
self-phase modulation coefficientW in Eq. (8) via the relation

χ(3) =
2c

ωs

|p13|2
~2

W. (9)

Using the system parameters given in the last subsection but withΩc = 3.6 × 106 s−1, ∆2 =
2.5 × 107 s−1, ∆3 = 3.75 × 108 s−1, N = 2.0 × 1010 cm−3 andr0 = 13µm, we obtain
W = (−5.38+0.16i)×10−13 cm−1 s2 and Re(χ(3)) = −1.56×10−2 cm2 V−2, which is many
orders of magnitude larger than that in conventional fibers [38]. Hence the HC-PCF with the
filled atomic gas via EIT possesses greatly enhanced Kerr nonlinearity [39], contributed from
the quantum interference effect in the (resonant) atomic gas, which is very useful for practical
applications of many nonlinear optical processes, including effective four-wave mixing and
formation of weak-light solitons.

Since the system under study is a resonant one, the coefficients in Eq. (8) are generally
complex. However, when the system works under the EIT condition, the absorption of the
signal field can be largely suppressed, and therefore the imaginary part of these coefficients
can be made to be much smaller. Thus Eq. (8), when writing into the dimensionless form, can
be approximated by the nonlinear Schrödinger equationi∂u/∂s + ∂2u/∂σ2 + 2|u|2u = 0,
whereu = U/U0, s = −z/(2LD), andσ = τ/τ0, with LD = τ20 /K̃2 (τ0 is the pulse du-
ration of the signal field) the typical dispersion length of the system. Note that we have taken
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LN = LD with LN = 1/(W̃U2
0 ) the typical nonlinear length, and thusU0 = (1/τ0)

√

K̃2/W̃

(typical Rabi frequency of the signal field in free space). Here the tilde aboveK2 andW
means taking the real part,̃K2 = Re(K2) andW̃ = Re(W ). A single-soliton solution reads
u(s, σ) = 2ϑsech[2ϑ(σ − σ0 + 4δs)] exp [−2iδσ − 4i(δ2 − ϑ2)s− iφ0], whereϑ, σ0, δ, and
φ0 are real free parameters that determine the amplitude (also width), propagating velocity, ini-
tial position, and initial phase of the soliton, respectively. For simplicity, we takeϑ = 1/2,
σ0 = δ = φ0 = 0. Then, when returning to original variables, we obtain the expression of the
signal fieldEs = esEs, with

Es =
~

τ0|p13|

√

K̃2

W̃

R⊥

r0J1(kr0)
J0

(

2.405
r

r0

)

sech

[

1

τ0

(

t− z

Ṽg

)]

× exp

[

i

(

K̃0 −
1

2LD

)

z − i(ωs +∆ω)t

]

+ c.c., (10)

hereK̃0 ≡ Re(K0), withK0 = K(∆ω)|∆ω=0.
We now give a set of system parameter for the formation of the optical soliton given above.

By takingΩc = 3.6 × 106 s−1, τ0 = 1.0 × 10−7 s,∆2 = 2.5 × 107 s−1, ∆3 = 3.75 × 108

s−1, N = 2.0× 1010 cm−3 and other parameters are the same as those given in the above text,
we obtain (evaluated at∆ω = 0) K0 = (−3.23 + 0.09i) cm−1, K1 = (4.05− 0.33i)× 10−8

cm−1 s,K2 = (−3.45 + 0.39i)× 10−15 cm−1 s2, W = (−5.38 + 0.16i) × 10−13 cm−1 s2,
U0 = 0.8×106 s−1, andLA = 1/Im(K0) = 10.39 cm (typical absorption length). In particular,
the nonlinearity length of the system is given by

LN = 2.9 cm, (11)

which means that to form the soliton very short fiber length is needed. With these parameters
we obtain

Ṽg = Re(Vg) = 8.17× 10−4 c, (12)

which means that the optical soliton has an ultraslow propagating velocity.
The energy flux of the ultraslow optical soliton in the HC-PCF predicted by Eq. (10) can

be calculated by using the Poynting vector integrated over the hollow core cross-section, i.e.,
P =

∫∫

dxdy(Es × Hs) · ez, whereez is the unit vector in the propagation direction [40].
At leading order the corresponding magnetic field of the soliton,Hs, is transverse and in the
es × ez direction. Thus ifes = ey thenHs = exHs with Hs ≈ neffǫ0cEs. After averaging

over the carrier-wave period, we obtainP = Pmax sech
2
[(

t− z/Ṽg

)

/τ0

]

, wherePmax =

2ǫ0cneff(~U0/|p13|)2
∫∫

|ζ(x, y)|2dxdy, with neff the effective refractive index of the signal
field, given in the Appendix A [i.e. Fig. (6) ]. Using the parameters given above, we obtain

Pmax = 0.82× 10−9W, (13)

i.e., the optical soliton has extremely low generation power. We see that, very different from
the optical solitons obtained in conventional solid-core optical fibers [38], the optical soliton
presented here has many attractive characters, including the very short formation distance [given
by (11)], the ultra slow propagation velocity [given by (12)], and the extremely low generation
power [given by (13)]. Physical reasons for these characters come from the enhanced EIT and
Kerr nonlinear effects in the resonant atomic gas confined in the core of the kagome-structured
HC-PCF.

Shown in Fig. 2(a) is the propagation of the ultraslow optical soliton with|Ωs(z, τ)τ0| as a
function ofz/LD andt/τ0. The comparison of waveshapes atz = 0 and atz = 2LD is given
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Fig. 2. (a) The propagation of the ultraslow optical soliton, with|Ωs(z, τ)τ0| as a function ofz/LD

andt/τ0 (LD is dispersion length andτ0 is pulse duration). (b) The comparison of waveshapes be-
tweenz = 0 (blue curve) andz = 2LD (red curve).

by Fig. 2(b). The solution is obtained by numerically solving Eq. (8) with all the imaginary
parts of the complex coefficients taken into account. In the simulation, the initial condition is
chosen asΩs(0, τ)τ0 = 0.08 sech(t/τ0). One sees that, although due to the dissipative effect
(mainly contributed by the dephsingγdep21 ) there is a weak amplitude decay when propagating
to z = 2LD, the soliton can keep its shape well for a propagation distance up to2LD = 5.8 cm.

4. Storage and retrieval of the ultraslow weak-light solitons in kagome struc-
tured HC-PCF

4.1. Storage and retrieval of the optical soliton pulse in a small-core kagome-
structured HC-PCF

Although many schemes have been proposed and realized in the atomic gases in free space (see
Refs. [41–51] and references therein), the light memory using an atomic gas filled in HC-PCFs
is more desirable. The reasons are the following. First, guided-wave optics can confine optical
modes within a small area over a distance longer than that is possible with diffractive optics
in free space, thus the light power required to obtain strong light-atom coupling can be largely
reduced, which can increase light memory efficiency. Second, an integrated platform is easier
to interface with existing photonic architectures and also easier to scale up. Thus it is nature to
seek the possibility of the storage and retrieval of the ultraslow weak-light solitons obtained in
the last section.

The principle of EIT-based light memory is as follows [6]. When switching on the control
field, the signal pulse propagates in the atomic gas with nearly vanishing absorption; by slowly
switching off the control field the signal pulse disappears and gets stored in the atomic gas in the
form of atomic coherence; when the control field is switched on again the signal pulse appears
again. However, this principle was usually applied for linear optical pulses, which are not stable
during propagation and suffer serious deformation due to the dispersion and/or diffraction. In
the following, we show that it is available to realize the memory of stable optical soliton pulses
in the kagome-structured HC-PCF obtained in the last section.

To this end, we numerically solve the MB equations (2) and (3) by taking the control field
to be adiabatically changed with time to realize the function of its switching on and off. The
switching-on and the switching-off of the control field are modeled by the combination of two
hyperbolic tangent functions with the form

Ωc = Ωc0

{

1− 1

2
tanh

[

t− T off
c

Ts

]

+
1

2
tanh

[

t− T on
c

Ts

]}

, (14)
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Fig. 3. Numerical results on the storage and retrieval of an optical soliton pulse and a linear optical
pulse forr0 = Λ0 = 13µm. (a) [(b)] Evolution of the dimensionless half Rabi frequency|Ωsτ0| of
the signal field (atomic coherencẽσ21) as a function of timet for different propagation distancez in
the soliton regime. (c) [(d)] Evolution of the dimensionless half Rabi frequency|Ωsτ0| of the signal
field (atomic coherencẽσ21) as a function oft for differentz in the linear regime. In each panel, the
black, red, green, yellow, sky blue, and blue solid lines are forz=0, 1, 2, 3, 4 and 5 cm, respectively;
the purple solid line represents the dimensionless half Rabi frequency|Ωcτ0| of the control field.

whereT off
c andT on

c are respectively the times of switching-off and switching-on of the control
field. The switching time of the control field isTs and the storage time of the signal pulse is
approximately given byT on

c − T off
c . We chooseTs = 0.5τ0, T off

c = 10.0τ0, T on
c = 20.0τ0, with

τ0 = 1.0× 10−7 s. Note that due to the light confinement in the transverse directions, the MB
equations [i.e. (2) and (3)] controlling the motion of the atoms filled in the HC-PCF are different
from those in free space. In particular, the mode functionζ(x, y) appears in the coefficients of
these equations, making the calculation of light memory more complicated than that in free
space.

We first consider the kagome-structured HC-PCF with a relatively small core radiusr0 (but
much larger than that of the bandgap-structured HC-PCF in Ref. [26]). In this case, the system
can be well approximated by a quasi-one-dimensional waveguide since the variation of the
electric field onx andy is much faster than that onz, and hence the light memory can be
studied by using the Eq. (3) and effective Bloch equation (23) (see Appendixes B and D). Shown
in Fig. 3(a) is the result of storage and retrieval of an optical soliton pulse forr0 = Λ0 = 13µm,
where |Ωsτ0| is taken as a function of the propagation distancez and the evolution timet.
The wave shape of the input signal pulse is taken as a hyperbolic secant one with a larger
amplitude for forming soliton, i.e.,Ωin

s (t)τ0 = 0.1 sech(1.5t/τ0). The black, red, green, yellow,
sky blue, and blue solid lines in each panel are for the soliton pulse propagating to the distance
z=0, 1, 2, 3, 4 and 5 cm, respectively; the purple solid line is for the dimensionless half Rabi
frequency|Ωcτ0| of the control field. From the figure, we see that in this soliton regime the
pulse is narrowed (i.e. the soliton is indeed formed) before its storage because of the balance
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between the dispersion and nonlinearity in the system. When the control field is switched off at
t = T off

c = 10 τ0, the soliton pulse disappears, and then appears again when the control field is
switched on att = T on

c = 20 τ0.
During the storage stage, the energy (information) of the optical soliton pulse is transferred

into the atomic gas. Fig. 3(b) shows the result of the atomic coherence|σ̃21| as a function ofz
andt. One sees that̃σ21 is nonzero during the switch-off of the control field. Since the signal
pulse is stored in the form of atomic coherenceσ̃21 when the control field is switched off and is
retained until the control field is switched on again, the atomic coherenceσ̃21 can be taken as
the intermediary for the memory of the signal pulse.

The efficiencyη of the light memory can be described by the energy ratio between the re-
trieved pulse and the input pulse [52], i.e.,

η =

∫∞

T on
c
dt
∫∫

r≤r0
dxdy |Eout

s (x, y, t)|2
∫ T off

c

−∞
dt
∫∫

r≤r0
dxdy |Ein

s (x, y, t)|2
, (15)

whereEin
s (x, y, t) = Es(x, y, z, t)|z=0 andEout

s (x, y, t) = Es(x, y, z, t)|z=Lz
, with Lz the

fiber length. Our calculation gives that the optical pulse memory efficiency in this soliton regime
is η = 86.3% for Lz = 5 cm. The fidelity of the light memory can be characterized by the
quantityηJ2, hereJ2 is the overlap integral

J2 =
|
∫ T off

c

−∞
dt
∫∫

r≤r0
dxdy Eout

s (x, y, t+∆T )Ein
s (x, y, t)|2

∫ T off
c

−∞
dt
∫∫

r≤r0
dxdy |Ein

s (x, y, t)|2 ·
∫∞

T on
c
dt
∫∫

r≤r0
dxdy |Eout

s (x, y, t)|2
, (16)

where∆T is the time interval between the peak of the input signal pulseEin
s and the peak of

the retrieved signal pulseEout
s . From Fig. 3(a) we see that the peak of the input signal pulse

(the black solid curve) is att = 0 and the peak of the retrieved signal pulse (the blue solid
curve) is att = 28τ0, and hence∆T = 28τ0. Using the formula (16) we obtainJ2 = 91.9%
for Lz = 5 cm. Thus, the fidelity of the optical soliton memory isηJ2 = 79.4%.

For comparison, the optical pulse memory in a linear regime is also calculated. Fig. 3(c)
shows the result of numerical simulation on the evolution of|Ωsτ0| as function ofz and t.
The input signal pulse is also taken as a hyperbolic secant function but with a much smaller
amplitude, i.e.,Ωin

s (t)τ0 = 0.01 sech(1.5t/τ0). The colored solid lines are forz=0, 1, 2, 3, 4
and 5 cm, respectively. At beginning, the pulse profile for red line (z = 1 cm) in Fig. 3(b) is
similar to that in Fig. 3(a) with almost same peak amplitude and pulse width. However, after
5 cm propagation, the peak value of blue line (z = 5 cm) decreases to6.8 × 104 and its width
is more than2.0τ0. The blue line in Fig. 3(a) still keeps its amplitude and pulse width. From
the figure, we see that the retrieved signal pulse is significantly broadened and its amplitude
decreases rapidly. Based on Eqs. (15) and (16), we obtain the memory efficiency and fidelity of
the linear optical pulse, respectively given byη = 79.8% andηJ2 = 62.9% for Lz = 5 cm,
lower than the optical soliton memory shown in Fig. 3(a). The atomic coherence|σ̃21| of the
linear optical pulse during the storage and retrieval is presented in Fig. 3(d).

For a given storage time, the memory efficiency of the optical soliton pulse depends on the
fiber lengthLz and the fiber core radiusr0 when the other system parameters are fixed. Fig. 4
shows the result ofη as a function of the fiber lengthLz for the storage timeT on

c −T off
c = 10τ0.

The blue, red and green solid curves in the figure are respectively forr0 taking 13, 15, and17µm
(the pitchΛ0 is fixed to be13 µm). From the figure we can obtain the following conclusions:
(i) For any core radiusr0, the memory efficiencyη grows rapidly in the smallLz region (i.e. the
region on the left side of its peak value), then asLz increases it reaches to the peak value, and
finally drops down slowly in the largeLz region (i.e. the region on the right side of the peak
value); (ii) In the large (small)Lz region, the smaller the core radiusr0 the higher (lower) the
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Fig. 4. Memory efficiencyη of the optical soliton pulse as a function of the fiber lengthLz . Solid
lines are fitted curves based on numerical calculation. The blue, red and green solid lines are for the
fiber core radiusr0=13, 15 and 17µm, respectively. Dashed-dotted lines for each core radius are the
memory efficiencies when a microwave field is coupled to the two lower atomic levels [i.e.|1〉 and|2〉
in Fig. 1(b) ].

memory efficiencyη. The physical reasons are the following. Since the signal pulse in the fiber
with a larger core radius has a smaller group velocity, in the smallLz region (where damping
due to the spontaneous emission and dephasing is negligible) the compression of the signal
pulse is more effective and hence the memory efficiency for the large-core fiber is larger than
that of the small-core fiber. However, in the largeLz region (where damping plays a significant
role), the attenuation of the signal pulse in the small-core fiber is relatively smaller than in the
large-core fiber and thus the memory efficiency is higher for the small-core fiber. Consequently,
one can acquire a large memory efficiency of the optical soliton pulse by suitably selecting the
core radius and the fiber length.

The main factor affecting the light memory efficiency and fidelity is the value of the dephasing
rateγdep21 . To improve the efficiency and fidelity, one can employ a microwave field to couple
the two lower atomic levels [i.e.|1〉 and|2〉 in Fig. 1(b)]. The microwave field is applied within
the time interval in which the control field is switched off, which can provide a gain to the
atomic coherenceσ21 [53]. We have carried out a numerical simulation on the memory of an
optical soliton pulse by adding such a microwave field into the system, with the result shown by
the dashed-dotted lines in Fig. 4. We see that by using the microwave field the soliton memory
efficiency can be increased by20%, which is valid for the all values of the core-radiusr0.

4.2. Storage and retrieval of the optical soliton pulse for a large-core kagome-
structured HC-PCF

As pointed out previously, a large-core fiber is desirable to fill more atoms in its core to obtain
a strong light-atom coupling in the system. Recently, the core radiusr0 of kagome-structured
HC-PCF has been extended to 50µm [54,55], which encourages us to consider the memory of
optical soliton pulse with such large-core fiber.

To this end, we make a numerical simulation to investigate the memory of optical soliton
pulse in a kagome-structured HC-PCF with the core radiusr0 = 50µm and the pitchΛ0 =
25µm. Note that in this situation the distribution range of the mode functionζ(x, y) is relatively
large, the effective Bloch equation [i.e. Eq. (23)] is not a good approximation. Nevertheless, the
(reduced) Maxwell equation (3) is still valid since the distribution range ofζ(x, y) is still much
smaller than the spatial length of the signal pulse in the propagation (i.e.z) direction [56]. Thus
the simulation is carried out based on the Eqs. (3) and (19).

Shown in Fig. 5(a) is the result of the storage and retrieval of an optical soliton pulse in the
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Fig. 5. (a) Storage and retrieval of the optical soliton pulse in the HC-PCF with core radiusr0 = 50
µm and pitchΛ0 = 25µm. The subplots from (i) to (v) give the intensity distribution|Es|2 of
the soliton pulse in the(x, y) plane when propagating to the distancez = 0, 1, 2.5, 4, and 5 cm,
respectively.t = 0, 3.5τ0, 15τ0 , 25τ0 , and28.5τ0 shown respectively in (i) to (v) are the times when
soliton’s peak arrives at the positionsz = 0, 1, 2.5, 4, and 5 cm, respectively. (b) Storage and retrieval
of a linear optical pulse in the same fiber.

large-core fiber. The switching on and off of the control field is still modeled by the function
(14). Panels (i) to (v) in the figure give the electric-field intensity distribution|Es|2 of the soliton
pulse in the(x, y) plane for the soliton propagating to the distancez = 0, 1, 2.5, 4, and 5 cm,
respectively.t = 0, 3.5τ0, 15τ0, 25τ0, and28.5τ0 shown respectively in (i) to (v) are the times
when the peak of the soliton arrives at the positionsz = 0, 1, 2.5, 4, and 5 cm, respectively. We
see that the optical soliton pulse can still be stored and retrieved in the system and can keep
well its shape during the storage process. The efficiency and fidelity of the light memory in the
present case areη = 77.6% andηJ2 = 71.2% for Lz = 5 cm, respectively.

For comparison, Fig. 5(b) shows the storage and retrieval of a linear optical pulse in the same
large-core fiber. One sees that during the storage process the linear optical pulse undergoes a
significant decrease of the amplitude. By the formulas (15) and (16) one obtains small mem-
ory efficiency (η = 63.8%) and small fidelity (ηJ2 = 50.3%), lower than the optical soliton
memory shown in Fig. 5(a).

5. Discussion and summary

From the results described above, we see that the optical soliton pulses in the kagome-structured
HC-PCF can not only be robust during propagation, but also be stored and retrieved with rela-
tively higher efficiency and fidelity.

We note that there are two types of HC-PCFs, i.e., bandgap-structured HC-PCFs and kagome-
structured HC-PCFs [15–17,57–59]. The bandgap-structured HC-PCFs have a true bandgap for
eigenfrequency, which can be taken as a guidance mechanism preventing light from propagating
in fibre cladding and confining the light within the fiber core. The EIT and related phenomena
based on such HC-PCFs were demonstrated in many previous studies (see, e.g., Refs. [18–25]).
The kagome-structured HC-PCFs do not possess a bandgap, so the light is guided by different
mechanisms (e.g., anti-resonant reflection) [15]. The EIT and related Raman memory based on
such HC-PCFs were also reported [33,60,61].
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Our work presented above is different from that considered in Ref. [26], where the authors
employed a bandgap-structuredHC-PCF with a small core radius and did not discuss the storage
and retrieval of optical solitons. In contrast, in our work not only the formation and propagation
but also the storage and retrieval of the optical solitons are investigated, both are based on the
kagome HC-PCF. In addition, our work is also at variance with those studied in Refs. [18–25,33,
60,61], where no optical solitons and their storage and retrieval were studied. We stress that the
light memory using the atomic gas filling into the kagome HC-PCF has higher efficiency and
fidelity than those using an atomic gas in free space. For comparison, consider the same cesium
atomic gas (used above) works in a free space with the same control fieldΩc. If the input signal
pulse has the transverse mode profileq(x, y) = J0(kr), the characteristic diffraction length of
the system readsLDif =

√
3πr20/λs. If r0 = 13µm (r0 = 50µm), one hasLDif = 0.1 cm

(LDif = 1.6 cm), which is much shorter than the medium length (5 cm) and thus the diffraction
effect in the system is very significant. Due to the diffraction, the signal pulse spreads fast
in the transverse directions and its amplitude decreases rapidly. As a result, one obtains, for
r0 = 13µm (r0 = 50µm), the light memory efficiency and fidelity are respectively given by
η = 0.997% andηJ2 = 0.786% (η = 16.65% andηJ2 = 14.39%), which are much lower
than those obtained by using the kagome-structured HC-PCF considered above.

Note that in principle one can take bandgap-structured HC-PCFs [15–17] for generating the
ultraslow weak-light soliton pulses and for realizing their storage and retrieval. However, the
kagome-structured HC-PCFs, as indicated in Sec. 1, are better for implementing such tasks. For
instance, using the core radiusr0 = 5µm and the atomic densityN = 3.0 × 109 cm−3 in the
bandgap-structured HC-PCF given in Ref. [21], under the same control field one obtains the
nonlinear coefficient describing Kerr effect [defined by (9)]W = (5.05+0.31i)× 10−16 cm−1

s2 and hence the nonlinearity length (describing the formation distance of the optical solitons)
LN = 8.62 cm. Nevertheless, using the core radiusr0 = 13µm andN = 1.1× 1011 cm−3 in
the kagome-structured HC-PCF given in Ref. [33], one obtainsW = (2.17 + 0.44i)× 10−14

cm−1 s2 and henceLN = 0.3 cm. Thus, comparing with the bandgap-structured HC-PCF,
the Kerr effect in the kagome-structured HC-PCF can be made much larger, and hence the
formation distance of the optical soliton pulses can be made much smaller, which is desirable
for generating the solitons with a lower power and a smaller system size. In addition, due to the
longerLN and larger dephasing caused by larger transverse transit time, the memory efficiency
of the soliton storage in the bandgap-structured HC-PCF is less than22%, much lower than
that in the kagome-structured HC-PCF (> 77%). Due to these reasons, the kagome-structured
HC-PCF is chosen in our model. We expect that the result and method reported herein will be
useful not only for the understanding of nonlinear optical property of gas-filled HC PCFs, but
also for practical applications for manipulating optical information at weak-light level.

In summary, in this work we have investigated the formation and propagation of ultraslow
weak-light solitons and their memory in cold atomic gas filled in a kagome-structured HC-PCF
via EIT. We have shown that, due to the strong light-atom coupling provided by the transverse
confinement of the HC-PCF, the EIT and thus the Kerr nonlinearity of such system can be
largely enhanced. As a result, stable optical solitons with ultralow generation power down to
nW and the propagation velocity slow to10−5 c can be realized. We have demonstrated that
the optical solitons obtained can not only be robust during propagation, but also be stored and
retrieved with high memory efficiency and fidelity through the switching off and on of a control
laser field. The energy to generate soliton signals in HC-PCF is very low thus it is possible
to realize such light memory in weak nonlinear regime under single photon level. The results
reported herein are promising for practical applications of optical information processing and
transmission based on the ultraslow weak-light solitons and kagome-structured HC-PCFs.
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Fig. 6. Numerical result for the effective refractive indexneff of the kagome-structured HC-PCF
as a function of frequencyω with pitch Λ0 = 13 µm and three different core radiusr0. The solid
(dashed) line is for the fundamental (first higher-order) mode; the blue, red, and green colors are for
r0 = 13 µm, r0 = 15 µm, r0 = 17 µm, respectively.

Appendix

A. Electric-field mode functions of the kagome-structured HC-PCF

When in the absence of the atomic gas, the electric fieldE of the kagome-structured HC-PCF
satisfies the Maxwell equation▽2E − (1/c2)∂2E/∂t2 = [1/(ǫ0c

2)]∂2P/∂t2, hereP is electric
polarization intensity. Assuming that the frequency ofE is far from the resonant frequency
of the HC-PCF material, the electric polarization intensity has the fromP = ǫ0χhost(x, y)E,
whereχhost(x, y) is the electric susceptibility of the HC-PCF. Then the Maxwell equation is
simplified into▽2E − (n2/c2)∂2E/∂t2 = 0, with n = n(x, y) = [1 + χhost(x, y)]

1/2 the
refractive index of the HC-PCF without the atomic gas.

The general solution of the Maxwell equation can be written as

E =
∑

α

∑

ω

eα(ω)Eα(ω) qα(x, y) ei[βα(ω)z−ωt] + c.c., (17)

whereeα, Eα, qα(x, y), andβα are the polarization unit vector, mode amplitude, eigenfunction,
and propagation constant for the mode with indexα. The eigenfunctionqα satisfies the equation

(

∂2

∂x2
+

∂2

∂y2

)

qα(x, y) +
n2(x, y)ω2

c2
qα(x, y) = β2

α(ω)qα(x, y). (18)

Since an analytical solution of Eq. (18) is not available, we resort a numerical simulation.
Shown in Fig. 6 is the numerical result for the effective refractive indexneff(ω) of the kagome-
structured HC-PCF as a function of frequencyω. The solid (dashed) line is for the fundamental
(first higher-order) mode; the blue, red, and green colors are forr0 = 13 µm, r0 = 15 µm,
r0 = 17 µm, respectively. In the calculation, we assume the fiber is made of silica and the pitch
Λ0 (defined by the distance between two adjacent holes) of the HC-PCF [see Fig. 1(a)] is fixed
to beΛ0 = 13µm. Form the figure we see that the first higher-order mode has a lower effective
refractive index than the fundamental mode. Based on the effective refractive indexes obtained
we can find the corresponding eigenfunctions.

We are interested in the fundamental mode, whose electric-field distribution in the radial
direction (i.e. as a function ofr =

√

x2 + y2) is shown by the blue solid line in Fig. 1(c).
When obtaining the figure,r0 = Λ0 = 13µm is chosen. The shape of the fundamental mode
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can be fitted well by the zeroth-order Bessel functionJ0(2.405r/r0) [the red dashed curve in
Fig. 1(c)] [27]. One sees that the fundamental mode is well confined in the fiber core, as shown
in the inset of Fig. 1(c).

B. Equations of motion for the density-matrix elements

The equation of motion for the density-matrix elementsσjl reads [32]

i
∂

∂t
σ11 − iΓ13σ33 + ζ∗(x, y)Ω∗

sσ31 − ζ(x, y)Ωsσ
∗
31 = 0, (19a)

i
∂

∂t
σ22 − iΓ23σ33 + ζ∗(x, y)Ω∗

cσ32 − ζ(x, y)Ωcσ
∗
32 = 0, (19b)

i
∂

∂t
σ33 + iΓ3σ33 − ζ∗(x, y)Ω∗

sσ31 + ζ(x, y)Ωsσ
∗
31 − ζ∗(x, y)Ω∗

cσ32

+ζ(x, y)Ωcσ
∗
32 = 0, (19c)

(

i
∂

∂t
+ d21

)

σ21 − ζ(x, y)Ωsσ
∗
32 + ζ∗(x, y)Ω∗

cσ31 = 0, (19d)

(

i
∂

∂t
+ d31

)

σ31 − ζ(x, y)Ωs(σ33 − σ11) + ζ(x, y)Ωcσ21 = 0, (19e)
(

i
∂

∂t
+ d32

)

σ32 − ζ(x, y)Ωc(σ33 − σ22) + ζ(x, y)Ωsσ
∗
21 = 0, (19f)

wheredjl = ∆j −∆l + iγjl, ∆3 = ωs − ω31 and∆2 = ω12 − (ωc − ωs) are respectively one-
and two-photon detuings, withωjl = (Ej −El)/~ with Ej the eigenenergy of the state|j〉. The
dephasing rates are defined asγjl = (Γj + Γl)/2 + γdepjl , with Γj =

∑

El<Ej
Γlj representing

the rate of spontaneous emission of the state|j〉 to all lower energy states|l〉, andγdepjl being
the dephasing rate reflecting the loss of phase coherence between|j〉 and|l〉.

Under the slowly varying envelope approximation, the equation of motion forΩs reads

iζ(x, y)

(

∂

∂z
+

n2

cneff

∂

∂t

)

Ωs + κ13σ31 = 0, (20)

with n2 = 1 + χhost(x, y) the refractive index of the HC-PCF when the atomic gas is absent.
When the spatial distribution range ofζ(x, y) is much smaller than in the spatial length of the
signal pulse in the propagation (i.e.z) direction, by using the definitionσ31 = σ̃31ζ(x, y) and
〈ψ〉 =

∫∫

|ζ(x, y)|2ψ(x, y)dxdy/
∫∫

|ζ(x, y)|2dxdy, Eq. (20) is reduced into Eq. (3) given in
the main text.

C. Second-order approximation solution

The second-order approximation solution readsσ
(2)
21 = a

(2)
21 i

∂
∂t1
Feiθ, σ(2)

31 = a
(2)
31 i

∂
∂t1
Feiθ,

σ
(2)
jj = a

(2)
jj |F |2e−2āz2 (j=1, 2, 3), σ(2)

32 = a
(2)
32 |F |2e−2āz2 , with ā= ǫ−2Im[K(∆ω)|∆ω=0]
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and

a
(2)
11 =

P2 − P1

−iΓ13|ζ(x, y)Ωc|2
(

1
d∗

32

− 1
d32

) |ζ(x, y)|2, (21a)

a
(2)
22 =

G|ζ(x, y)|2 − iΓ13a
(2)
11

iΓ13
, (21b)

a
(2)
21 = −ζ

∗(x, y)Ω∗
c(2∆ω + d21 + d31)

D2
ζ(x, y), (21c)

a
(2)
31 =

(∆ω + d21)
2 + |ζ(x, y)Ωc|2
D2

ζ(x, y), (21d)

a
(2)
32 =

ζ(x, y)Ωc

d32
[
|ζ(x, y)|2
D∗

− (a
(2)
11 + 2a

(2)
22 )], (21e)

whereP1 = [iΓ23 − 2|ζ(x, y)Ωc|2 (1/d32 − 1/d∗32)]G, P2 = iΓ13|ζ(x, y)Ωc|2[1/(Dd∗32) −
1/(D∗d32)], with G = (∆ω + d∗21)/D

∗ − (∆ω + d21)/D andD = |ζ(x, y)Ωc|2 − (∆ω +
d21)(∆ω + d31).

D. Effective Bloch equation

Making the transformation [40]

σ̃jj(z, t) =

∫∞

−∞
dxdy|ζ(x, y)|2σjj(x, y, z, t)
∫∞

−∞
dxdy|ζ(x, y)|2 , (j = 1, 2, 3) (22a)

σ̃21(z, t) =

∫∞

−∞
dxdy|ζ(x, y)|2σ21(x, y, z, t)
∫∞

−∞
dxdy|ζ(x, y)|2 , (22b)

σ̃31(32)(z, t) ζ(x, y) = σ31(32)(x, y, z, t), (22c)

Eq. (19) is reduced into the effective Bloch equation

i
∂

∂t
σ̃11 − iΓ13σ̃33 + ρΩ∗

sσ̃31 − ρΩsσ̃
∗
31 = 0, (23a)

i
∂

∂t
σ̃22 − iΓ23σ̃33 + ρΩ∗

c σ̃32 − ρΩcσ̃
∗
32 = 0, (23b)

i
∂

∂t
σ̃33 + iΓ3σ̃33 − ρΩ∗

sσ̃31 + ρΩsσ̃
∗
31 − ρΩ∗

c σ̃32 + ρΩcσ̃
∗
32 = 0, (23c)

(

i
∂

∂t
+ d21

)

σ̃21 − ρΩsσ̃
∗
32 + ρΩ∗

c σ̃31 = 0, (23d)

(

i
∂

∂t
+ d31

)

σ̃31 − Ωs(σ̃33 − σ̃11) + Ωcσ̃21 = 0, (23e)
(

i
∂

∂t
+ d32

)

σ̃32 − Ωc(σ̃33 − σ̃22) + Ωsσ̃
∗
21 = 0, (23f)

with ρ =
∫∞

−∞
dxdy|ζ(x, y)|4/

∫∞

−∞
dxdy|ζ(x, y)|2, describing the confinement of the HC-PCF

in the transverse directions.
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