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The strong coupling of atoms and molecules to radiation field
modes in optical cavities creates dressed matter/field states known
as polaritons with controllable dynamical and energy transfer
properties. We propose a multidimensional optical spectroscopy
technique for monitoring polariton dynamics. The response of
a two-level atom to the time-dependent coupling to a single-
cavity mode is monitored through time-and-frequency–resolved
single-photon coincidence measurements of spontaneous emis-
sion. Polariton population and coherence dynamics and its varia-
tion with cavity photon number and controlled by gating parame-
ters are predicted by solving the Jaynes–Cummings model.
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Cavity quantum electrodynamics (QED) provides a power-
ful tool for studying quantum effects in matter (1–6). Due

to strong coupling between electronic and nuclear degrees of
freedom, molecular systems can undergo nonadiabatic dynam-
ics, which is hard to detect. The nonadiabatic dynamics can be
manipulated (7) when a molecule is coupled to a localized cav-
ity mode. Earlier studies in atomic systems showed that the
cavity photons can enhance cooperative signals, such as super-
radiance and subradiance (8, 9). The description of these phe-
nomena is based on the joint photon–matter states known as
polaritons (10, 11). Cavity polaritons have been applied to trap-
ping and cooling of atoms (12) and prescribe a new recipe for
cooling molecules (13, 14). Cavity effects can provide a tool to
probe larger molecules (15, 16), where various many-body quan-
tum effects play an important role. For instance, the polariton–
polariton interaction strength can be directly probed in a high-
quality microcavity (17). Strong coupling in cavity QED has been
recently demonstrated for organic molecules (18–21) and pho-
tosynthetic light harvesting (22). Polaritons have been further
investigated in chromophore aggregates (11) arising from elec-
tronic transitions (10) as well as from vibrational transitions (23),
which in turn, allow the manipulation of chemical reaction rates
and outcomes (24–27).

Cavity polariton dynamics can be investigated by nonlinear
spectroscopy. IR and Raman spectroscopies have been recently
used to show the enhancement of the spectra of vibrational
polaritons in molecular aggregates (11, 28–31). More elaborate
two-dimensional spectroscopic measurements have further pro-
vided experimental demonstration for multiexciton correlation
effects (32). Coherent multidimensional spectroscopy can reveal
correlations of matter dynamics during several time intervals
controlled by sequences of short pulses to reveal material infor-
mation (33, 34) by a coherent measurement of a signal optical
field. Such correlation plots carry qualitatively higher levels of
information than single-interval (1D) techniques. A recent theo-
retical study of vibrational polaritons using coherent 2D IR spec-
troscopy (35) has been reported.

In this paper, we propose to study polariton dynamics using
a different class of incoherent multidimensional signals. Unlike
coherent multidimensional techniques, which is based on care-
fully timed laser pulse sequences, incoherent techniques detect
spontaneously emitted light, and the control knobs of such sig-

nals are based on single-photon gated detection. Time-and-
frequency (TF)–gated N -photon measurement provides a 2N -
dimensional parameter ωj tj space. An adequate microscopic
description where joint matter and field information could be
retrieved by a proper description of the detection process is
required for, e.g., single-photon spectroscopy of single molecules
(36–38). These photon counting techniques performed on bulk
ensembles or at the single-molecule level offer unique windows
into molecular events and relaxation processes that are comple-
mentary to coherent multidimensional techniques (34). The pro-
posed incoherent photon coincidence counting measurements
(5, 39) can monitor the joint system–cavity mode state as well
as the cavity mode statistics. The independent control of the
TF photon gating parameters can capture detailed features of
polariton dynamics. We consider a two-level system strongly
coupled to the quantized cavity modes. The strong coupling
is attributed to the enhanced density of radiation states inside
the cavity governed by the Purcell effect (1), which results in
the strong enhancement of the photon emission into the cavity
modes. The joint atom plus photon states (polaritons) can be
described by the Jaynes–Cummings (JC) model (2), which is a
pillar of quantum optics. In addition, strong coupling requires
large absorption oscillator strength, narrow exciton absorption
line width, and small cavity losses into leaky modes. It is, there-
fore, expected that dissipation does not affect the ladder dynam-
ics. Furthermore, for typical molecular polaritons, the dynamics
occurs on a picosecond timescale, whereas the cavity linewidth is
usually in the nanosecond range. The quantum nature of the field
has been shown to result in revival of damped Rabi oscillations,
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which is missed by a classical field (40). We shall use a gener-
alized JC model, where the system–cavity field coupling is time
dependent (41–43). To achieve temporal modulation, cavity mir-
ror must be manipulated on a similar timescale to the molecu-
lar dynamics that needs to be controlled. It is hard to achieve
this by mechanical devices. However, terahertz scanning tunnel-
ing microscope (THz-STM) techniques may provide necessary
modulation speed down to picosecond timescale (44).

Analytical solutions for the time evolution of the population
inversion for the time-dependent JC model can be derived for
specific time profiles of the system–cavity coupling (41, 42, 45).
The gated number of photons spontaneously emitted into non-
cavity modes and photon coincidence signals for this analytically
solvable time-dependent JC model are given by two-point and
four-point correlation functions of the dipole operator, respec-
tively. We shall use a compact time ordered superoperator for-
malism in these calculations (46–49). These correlation functions
and the corresponding Green’s functions that describe dynamics
in the dressed field–matter (polariton) space will be calculated.
The proposed signals provide a unique observation window for
the population and coherence polariton dynamics.

The spontaneously emitted photons will be detected by a TF–
resolved photon gating obtained by consecutive spectral and
temporal gates with bandwidths Γω and ΓT , respectively. Opti-
mization of the temporal and spectral resolutions is required
when the field–matter coupling variation is faster than the
inverse magnitude of the change of the coupling. We compare
this gating with a simpler commonly used “physical spectrum”
(PS) (50), which only uses a spectral gate characterized by a sin-
gle parameter Γps that controls both spectral Γps and temporal
resolution 1/Γps . We find that the TF gating can resolve a variety
of dynamical features that are missed by the PS.

Evolution of Polaritons in Time-Modulated Cavities
The two-level molecular system can be described by the Pauli
matrices, which satisfy σiσj = δij + iεijkσk , where i , j , k = x , y , z .
We denote the eigenstates of σz by | ↑〉 and | ↓〉 with eigenval-
ues 1 and −1; the operators σ±= 1

2
(σx ± iσy) represent dipole

raising V †=µ∗σ+ and lowering V =µσ− operators, where µ
is the transition dipole. Using this notation, the time-dependent
JC model Hamiltonian reads

HJC =ωA+A−+
ω0

2
σz +λ(t)(A+σ−+A−σ+), [1]

where ω0 is the transition frequency, λ(t) is the time-modulated
system–cavity coupling, and A+ (A−) is a creation (annihila-
tion) operator for the cavity mode. The first two terms repre-
sent the cavity field and the molecule, respectively, while the
third term corresponds to the interaction between molecule and
cavity field. The matter plus field dressed (polariton) state ener-
gies that form the JC ladder obtained by diagonalizing Eq. 1

En±=ω(n + 1/2)±
√

(ω0−ω)2/4 +λ2(t)(n + 1) are shown in
Fig. 1. We adopt the following coupling profile:

λ(t) =λ0sech[(t −T )/(2τ)]. [2]

This represents pulsed modulation of duration 2τ centered at
time T with magnitude λ2

0 =
ω2

0 |µ|
2

2ωε0V~
, where V is the cavity vol-

ume. The sech profile allows for exact analytical solution for the
time evolution using special functions (SI Text). Our approach,
however, is general and can treat an arbitrary time profile.

In addition to the strong coupling to the single-longitudinal
cavity mode, the atom is weakly coupled to the vacuum modes
described by Hvac =V

∑
k gka

†
k +H .c., where ak is a field oper-

ator for vacuum modes that is responsible for the spontaneous
emission into noncavity modes. The spontaneous emission rate

noncavity modes

cavity mode

t1, ω1 t2, ω2

photon number
detector

Fig. 1. (Top) Atom in the cavity emitting photons into the longitudinal cav-
ity mode as well as noncavity vertical modes. Two TF-resolved detectors out-
side of the cavity register noncavity modes photon coincidence events. One
photon number-resolving detector on the main optical axis measures pho-
ton number of the cavity mode photons. (Middle Left) Fock states. (Mid-
dle Right) Time evolution of the dressed atom plus cavity (polariton) states
of the JC subject to the coupling Eq. 2. Vertical black dashed lines repre-
sent transition between different ladder states captured by spectroscopic
measurements. (Bottom) Time evolution of the atom–cavity mode coupling
λ(t) (black line) and population inversion 〈σz(t)〉′ Eq. 3 (red line) for an
atom initially in the excited state with cavity mode being initially in the
vacuum state.

into the cavity mode (vertical lines in Fig. 1) at resonance ω=

ωc =ω0 is γcav = 2Q|µ|2
~ε0V

(3), where Q =ω0/2κ is the quality fac-
tor of a mode at frequency ωc with cavity loss rate κ. The typi-
cal solid angle extended by the cavity mirrors is very small, and
therefore, the atomic decay rate governed by Hvac into noncav-
ity modes is then comparable with the rate of atomic decay rate
in free space γ0 =

ω3
0 |µ|

2

3~ε0πc3 . The Purcell factor f = γcav
γ0

= 3Q
V

2πc3

ω3
0
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(1, 3) is much greater than one, and the cavity leads to a strong
enhancement of the atom’s ability to emit photons into the cavity
mode. Details are in SI Text. We use perturbation theory in Hvac

and trace over the vacuum field. We shall calculate various pho-
ton counting signals by placing the detectors off the cavity axis.
These signals are governed by multipoint correlation functions of
the dipole operators, and the corresponding Green’s functions
are determined by an exact solution of the equation of motion
governed by HJC alone.

Gated Photon Counting Signals
Atomic Inversion. We first present the atomic inversion (popula-
tion difference of the two-level system) 〈σz (t)〉′= 〈ψ0|U (t)F0

U †(t)|ψ0〉 given in Eq. S51. Assuming that, initially, the atom is
in the excited state (wn = 1, vn = 0) and the cavity mode in the
vacuum state n = 0, the inversion

〈σz (t)〉′= 1− 2|F1(t)|2 [3]

undergoes oscillation between ±1 as seen in Fig. 1. F depends
on the atom–field interaction time τ . We note that, although
initially, the cavity is empty (no photons), the atom will Rabi
flip between the ground and excited states during the interaction
time due to the fact that continuum of modes of the free space
modes is replaced by a single cavity mode. This results in Rabi
oscillations rather than dissipative spontaneous emission.

Gated Photon Counting Signals. In the following, we denote a
general Nth-order correlation measurement as photon count-
ing. Gated photon number and gated photon coincidence cor-
respond to g(1) and g(2) measurements, respectively, where each
photon has its own detector. We thus calculated the gated pho-
ton number and photon coincidence signals using the formalism
of ref. 48. TF-resolved photon number is detected by placing a
sequence of temporal and spectral filters in front of the bucket
photon detector, whereas the photon coincidence is detected by
simultaneous monitoring of a pair of the gated photons, which
is a single-photon version of the intensity–intensity correlation
measurement. Assuming Lorentzian gating (Eq. S32), we obtain
(for the TF-resolved photon number signal)

n(t ,ω) =

∫ ∞
0

dt ′1

∫ ∞
0

dt ′′1 D(ω; t ′1, t ′′1 )〈V †(t − t ′′1 )V (t − t ′1)〉′.

[4]

The coincidence counting signal is similarly given by

g(2)(t1,ω1; t2,ω2) =

∫ ∞
0

dt ′1

∫ ∞
0

dt ′′1

∫ ∞
0

dt ′2

∫ ∞
0

dt ′′2

×D(ω1; t ′1, t ′′1 )D(ω2; t ′2, t ′′2 )〈V †(t − t ′′1 )

×V †(t − t ′′2 )V (t − t ′2)V (t − t ′1)〉′. [5]

For the TF gated signals DTF (ω, t ′, t ′′) = θ(t ′′− t ′)F ∗Γ+(t ′′,ω)

FΓ−(t ′,ω), where exponential gate FΓ(t ′,ω) = e [i(ω−ω0)−Γ]t′.
The gating bandwidth in DTF is given by a combination of tem-
poral and spectral gates Γ±= ΓT ±Γω . Details of the derivation
of the signals via matter correlation functions defined by Eqs.
S45 and S48 are given in SI Text.

Results and Discussion
Using Eqs. 4 and 5, we have simulated the photon number n

and the photon coincidence rate g(2); the time-dependent cou-
pling profile given by Eq. 2 is shown in Fig. 1 for the param-
eters given in Materials and Methods. Fig. 2 depicts the time–
frequency dependence of the TF gated photon number. Consider
first a fast variation τ , such that ∆t∆ω' τ2Ω1 = 1, where 2Ω1 is
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Fig. 2. (A and B) A 2D depiction of TF gated photon number nTF (t,ω) [S60]
using the gating parameters Γω = 2λ0 and ΓT = 2.5λ0 for the fast modu-
lation with τ−1 = 2.2λ0 (A) and Γω = 0.8λ0 and ΓT = 0.95λ0 along with
slow modulation τ−1 = 0.6λ0 (B). (C and D) Same coupling duration as in A
and B but for PS gated photon number nPS(t,ω) [S59] for gated bandwidths
Γps = 2λ0 (C) and Γps = 0.8λ0 (D).

a spectral interval between neighboring lines of the first-order
JC ladder (e.g., at ω=ω0 and ω0± 2Ω1, where Ωn =παn/4τ).
The photon number signal shown in Fig. 2A now shows a domi-
nant peak at ω=ω0 and two strong side peaks at ω=ω0± 4Ω1,
which evolve for the entire range of t . We also see weak peaks
at ω=ω0± 2Ω1. For a slow modulation ∆t∆ω= 3.7 due to the
extra time gate, the TF signal yields no time resolution and very
weak side peaks at ω=ω0± 2Ω1 as shown in Fig. 2B. The side
peaks signify the coherence origin of the photon coming from
the superposition of the dressed atom–cavity states, which can
only be observed during the time modulation of the coupling.

The photon coincidence signals are shown in Fig. 3 A–D.
For rapid coupling variation corresponding to Fig. 2A, the coin-
cidence counting depicted in Fig. 3A contains side peaks at
ω1,2 =ω0± 2Ω1, ω0± 4Ω1. These are well-resolved and form a
grid similar to that reported by del Valle and coworkers (51–
53). For gating times t1 =T , t2 =T − 20τ , the signal shows high
spectral resolution with well-pronounced peaks at ω2 =ω0± 2Ω1

and a single peak for ω1 =ω0. In addition, it contains peaks for
ω1 =ω0± 2Ω1 and ω0± 4Ω1 as depicted in Fig. 3B. At t1 =T +
20τ , t2 =T − 20τ , Fig. 3C is similar to Fig. 3A. Finally, for t1 =
T + 20τ , t2 =T , Fig. 3D shows a full grid of well-pronounced
resonances with three prominent peaks for ω1 =ω0,ω0± 2Ω1

and ω2 =ω0 and a set of weaker peaks for ω2 =ω0± 2Ω1 and
ω0± 4Ω1.

We next compare the commonly used TF gated results
of Figs. 2 A and B and 3 A–D with the simpler PS gat-
ing (50, 51), which uses the gating function DPS (ω; t ′, t ′′) =
F ∗Γps

(t ′′,ω)FΓps (t
′,ω). The PS photon number signal (4) shown

in Fig. 2C has a single dominant peak at ω=ω0 and two
very weak peaks at ω=ω0± 4Ω1 visible only at t 'T . This is
due to the limited resolution allowed by the model (∆t∆ω=
2). Higher-order resonances at ω=ω0± 2Ω1 and ω=ω0±
6Ω1 are not resolved by this gate. For the slow process
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Fig. 3. (A–D) TF gated photon coincidence counting g(2)
TF (t1,ω1; t2,ω2) [S62] vs. ω1 and ω2 using gating parameters Γω1 = Γω2 = 2λ0, ΓT1 = ΓT2 = 2.5λ0

for t1 = T − 20τ , t2 = T + 20τ (A); t1 = T , t2 = T − 20τ (B); t1 = T + 20τ , t2 = T − 20τ (C); and t1 = T + 20τ , t2 = T (D). (E–H) Same but for PS gating
g(2)

PS (t1,ω1; t2,ω2) [S61] using gated bandwidth Γps1 = Γps2 = 2λ0 cm−1.

depicted in Fig. 2D, the stationary PS gate might have higher
spectral resolution, allowing us to visualize the strong side peaks
at ω=ω0± 2Ω1. Therefore, for slow cavity modulation, the tem-
poral gate is not necessary, and the PS is adequate. However,
rapid modulation requires separately controlled time gate when
∆t∆ω≤ 1, where PS fails and TF is required. Note that the key
parameter is not an absolute value of the modulation depth λ0

and duration τ but is their product for a given cavity photon num-
ber via τΩ1∼ τλ0

√
n + 1, which governs the temporal and spec-

tral resolution via the product ∆t∆ω.
Turning to coincidence counting, we note that the PS Eq. 5

has a low temporal and spectral resolution and misses some spec-
tral features. For instance, the JC ladder of various peaks cannot
be observed in Fig. 3 E and G for n = 1, t1 =T − 20τ , t2 =T +
20τ and t1 =T + 20τ , t2 =T − 20τ , respectively, other than the
zero-order peak at ω1 =ω2 =ω0. For t1 =T , t2 =T − 20τ , the
PS signal shows two weak peaks at ω2 =ω0± 2Ω1 and a single
peak for ω1 =ω0 as depicted in Fig. 3F, with much less contrast
compared with the case of TF. Finally, for t1 =T + 20τ , t2 =T ,
the PS signal has three overlapping peaks for ω1 =ω0,ω0± 2Ω1

but a single peak for ω2 =ω0 as depicted in Fig. 3H vs. well-
resolved peaks shown in Fig. 3D for TF. Therefore, the TF coin-
cidence counting signal shows how the response to the time
modulation of the coupling changes the configuration of the JC
states participating in the photon emission for a given cavity pho-
ton number, which is missed by the PS. The resonances that
manifest as cross-peaks in Fig. 3 A, C, and D mark the role of
coherence between different dressed atom–cavity states that are
governed by the coupling temporal profile, since the pair of
photons can be generated from the superposition of two JC
ladder states.

Note on the Joint Temporal/Spectral Resolution
We identify two main differences between the PS and TF sig-
nals. In PS, both frequency and time resolutions are deter-

mined by a single parameter Γps . The two time integrations
in Eq. S59 are independent, so that each field operator is
gated separately. In contrast, the TF signal in Eq. S60 depends
on two gating parameters Γ±. In addition, there is an extra
θ(t ′′1 − t ′1) factor, which couples the two time integrations in
Eq. S60. To examine how these parameters determine the tem-
poral and spectral resolutions of the signal, we performed an
asymptotic expansion of Eq. 7, such that, in zeroth order, one
can approximate it at t0 = 0 as Eq. S63. This contains terms of
the form (details are in SI Text) e(iωn±−1/(2τ)−Γps/2)(t−T)/(ωn±
− iΓps/2), where ωn±=ω−ω0± 2Ωn . This term yields two side
peaks due to Rabi splitting. Clearly, the spectral resolution is
given by ∆ωPS = Γps/2, whereas the temporal resolution is given
by ∆tPS = 2/Γps . The product of the two gives the Fourier limit
∆tPS ·∆ωPS = 1. The corresponding product of uncertainties
for the TF gated signal reads e(iωn±−1/(2τ)−ΓT/2)(t−T)/(ωn±
− iΓ+/2). The spectral resolution is now given by Γ+/2, the
combined spectral and temporal gate bandwidth. The tempo-
ral resolution is (Γ+/2 + Γ−/2)−1 = 2/ΓT , which is a temporal
gate alone. Therefore, ∆tTF ·∆ωPS = 1 + Γω/ΓT . An important
point is related to the fact that we achieve the sum Γ+ + Γ− for
the temporal resolution. This is due to the nested time integra-
tions and the θ(t ′′1 − t ′1) factor in Eq. S33. To illustrate the role of
the time gate, we can consider a high spectral resolution, so that
Γω + ΓT = Γps < 2Ωn . We also take 2/ΓT <τ < 2/Γps , such that
the PS temporal resolution is low, whereas the TF gated signal
gives high temporal resolution. Ultrafast temporal resolution of
single photons can be readily achieved in strongly coupled quan-
tum dot–cavity systems (54) or up-conversion schemes (55). The
pure time-resolved photon counting can be also used to probe
temporal evolution of the cavity polaritons. However, similar to
coherent spectroscopy, where time-resolved measurement alone
can only provide partial information about the system vs. multi-
dimensional four wave mixing spectroscopy that can distinguish
signal generated from the molecular populations and from the
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molecular coherences (due to intermolecular coupling), simulta-
neous TF gating allows us to distinguish signals originated from
polariton coherences and populations as follows from Fig. 3.

In summary, we have demonstrated how multidimensional
photon counting can be used to reveal polariton dynamics in
a cavity. The TF gated photon number and photon coinci-
dence detection can capture subtle time-evolving features, such
as dressed JC ladder polariton states and their correlations via
cross-peaks in the 2D photon coincidence spectra. Note that,
in the strong dissipation limit, the oscillations shown in Fig.
1 and contributing to the polariton dynamics would be signif-
icantly damped. This means that, for systems with the dynam-
ics of the timescale similar to the cavity damping rate, one has
to take into account the cavity leakage when evaluating the sig-
nals. Recent experiments in light harvesting molecules placed in
a microcavity (22) observe large amounts of scattering into the
microcavity system; however, the observed damping is not strong
enough to destroy the strong coupling. The technique described
in this paper can be useful for laser stabilization, where the cavity
photon distribution and gain medium dynamics are monitored
simultaneously. In this scenario, cavity photon statistics acts as
an input into the polariton configuration captured by the pho-
ton counting signals, which consequently monitors the stability
of the cavity radiation. The time-dependent coupling offers a
versatile coherent control tool. Similarly to the pulse shaping
technique used in ordinary spectroscopy, one can optimize the
coupling temporal profile in a generic algorithm setup to opti-
mize the control. To implement this control scheme, one has to
match the coupling duration and profile to the timescale of the
nuclear motion. In addition to the suppression of the dephas-
ing and changing of the dynamical rates that are observed in
the systems with the stationary cavity coupling, time-dependent
coupling provides a unique control mechanism for tracking the
polariton–polariton and other many-body correlation effects via
optimizing the corresponding coherences visualized as the cross-
peaks in 2D spectra in photon coincidence signals.

Materials and Methods
The Hamiltonian [1] can be recast as H = H0 + Hi , where H0 =ω(∆) and
∆ = n + 1+σz

2 is the field energy function given by Eq. S2, while Hi =

δ(∆)σz +λ(t)(A+σ− + A−σ+), and the δ(∆) is given by Eq. S3. For the one-
photon JC ladder, ω(∆) = (∆− 1/2)ω and δ(∆) = δ/2, where δ=ω0−ω. A
more general m-photon JC ladder, which can be used for describing mul-
tiphoton processes, is presented in SI Text. The subspace in which n, the
eigenvalue of ∆, satisfies for n 6=0 the special unitary group of the sec-
ond degree [SU(2)] symmetry of ∆. In many molecular polariton applica-
tions that involve, for example, nonadiabatic dynamics, the inclusion of the
counterrotating terms is required, which results in band-diagonal structure
of the Hamiltonian. While purely analytic, a solution without the rotating
wave approximation is possible only in certain cases (56), and the problem
can be treated in Fock space to allow for a numerically exact solution (57).
The time evolution operator may be recast as U(t) = e−iω(∆)tUi(t), where
Ui(t) is the evolution operator corresponding to Hi . Using the SU(2) algebra
and the Wei–Norman formalism (42, 58, 59), we can recast the evolution
operator in the form Ui(t) = eh(t)F0 eg(t)F+ ef(t)F− , where F± =±A∓σ±/

√
∆,

F0 =σz, and f(t), g(t), and h(t) are generally complex functions, such that
x∗(t) =−x(t), x = f , g, h. Introducing G(t) = g(t)eh(t), F (t) = f(t)e−h(t), and
H(t) = e−h(t) using unitary condition, we obtain G(t)=F∗(t). For simplicity

in the following, we assume that the atom is driven on resonance, such that
δ= 0. The functions X =F ,H satisfy the differential equation:

Ẍ−
λ̇

λ
Ẋ + 4(n + 1)λ2X = 0. [6]

The initial conditions for F ,H are H(t0) = 1, Ḣ(t0) = 0, F (t0) = 0, and
Ḟ (t0) = i

√
n + 1λ(t0) =−iα/(2τ ), where α= 2λ0τ

√
n + 1. Normalization

implies |H(t)|2 + |F (t)|2 = 1. Eq. 6 can be solved analytically for the
sech function coupling λ(t). Changing the variable to z(t) = e(t−T)/τ/[1 +

e(t−T)/τ ], we obtain a hypergeometric equation with β=−α= 1/2. The
solution of Eq. 6 subject to initial conditions above is given by a simplified
hypergeometric function

H(z) = cosh

[
2α log

( √
z +
√

z− 1
√

z0 +
√

z0− 1

)]
,

F (z) = sinh

[
2α log

( √
z +
√

z− 1
√

z0 +
√

z0− 1

)]
, [7]

where z0≡ z(t0).
The matter correlation functions in Eqs. 4 and 5 are traced over the

noncavity modes. Assuming initial wave function |ψ0〉=
∑

n[wn|n, ↑〉+
vn|n, ↓〉], where the coefficients wn (vn) represent the probability ampli-
tude of the atom to be in the excited (ground) state, the field is in a Fock
state with n quanta. These amplitudes satisfy the normalization

∑
n(|wn|2 +

|vn|2) = 1. The atomic inversion 〈σz(t)〉′ has been calculated previously (41)
and is given by Eq. S51.

To get the photon counting signal, we have calculated two-point [4] and
four-point [5] correlation functions:

〈V†(t1)V(t2)〉′ = |µ|2e−iω0(t1−t2)
∑

n

G∗in(t1)Gpn(t1, t2)Gin(t2), [8]

〈V†(t1)V†(t2)V(t3)V(t4)〉′ = |µ|4e−iω0(t1+t2−t3−t4)
∑

n

G∗in(t1)G∗cn(t2, t1)

×Gpn(t2, t3)Gcn(t3, t4)Gin(t4), [9]

where the “initial state” Green’s function Gi , “coherence” Gc, and “popula-
tion” Gp Green’s functions are defined, respectively, as

Gin(t) = wnHn+1(t)− vn+1F∗n+1(t),

Gcn(ti , tj) =Hn+1(ti)F∗n+1(tj)−F∗n+1(ti)Hn+1(tj),

Gpn(ti , tj) =H∗n+1(ti)Hn+1(tj) +Fn+1(ti)F∗n+1(tj). [10]

Making use of the closed form expressions [7], we have made use of Eqs.
8–10 to calculate the gated emission [4] and the coincidence counting [5].
Note that Eqs. 8–10 reduce to the simple Rabi oscillations cos(Ωt) in the
τ→ 0 limit given by Eqs. S57 and S58, respectively. Additional details are
summarized in SI Text.

The simulations shown in Figs. 1–3 use typical parameters related to vibra-
tional spectroscopy: vibrational frequency ω0 = 12600 cm−1, coupling mod-
ulation λ0 = 100 cm−1, and centered at T = 111.5 ps. The coupling timescale
in Figs. 1 and 3 is τ = 150 fs.
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