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Grover’s algorithm is a quantum search algorithm that proceeds by repeated applications of the Grover
operator and the Oracle until the state evolves to one of the target states. In the standard version of the
algorithm, the Grover operator inverts the sign on only one state. Here we provide an exact solution to the
problem of performing Grover’s search where the Grover operator inverts the sign on N states. We show
the underlying structure in terms of the eigenspectrum of the generalized Hamiltonian, and derive an
appropriate initial state to perform the Grover evolution. This allows us to use the quantum phase
estimation algorithm to solve the search problem in this generalized case, completely bypassing the Grover
algorithm altogether. We obtain a time complexity of this case of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D=Mα

p
, where D is the search space

dimension, M is the number of target states, and α ≈ 1, which is close to the optimal scaling.

DOI: 10.1103/PhysRevLett.120.060501

Grover’s algorithm [1] is one of the central algorithms in
the field of quantum computing that shows a speedup in
comparison to classical computing. For an unsorted search
space with D elements, classical algorithms take ∝ D steps
to find a solution, in comparison to Grover’s algorithm
taking ∝

ffiffiffiffi
D

p
steps. While the speedup is only quadratic in

comparison to other quantum algorithms such as Shor’s
algorithm with an exponential speedup, it is of fundamental
interest as it can be applied to a very wide variety of
problems. Many variants and applications of Grover’s
algorithm have been investigated in the past. The concept
of searching can be generalized to abstract solution spaces
rather than literal databases, making it applicable, in
principle, to any NP problem [2,3]. Furthermore, Grover
search finds many uses as a primitive in diverse applica-
tions such as cryptography [4,5], matrix and graph prob-
lems [6,7], quantum control tasks [8], optimization [9,10],
element distinctness [11], collision problems [12], and
quantum machine learning [13].
The standard version of Grover’s algorithm proceeds by

first preparing the register in an equal superposition of all
states jþi ¼ ð1= ffiffiffiffi

D
p ÞPD−1

n¼0 jni. One then repetitively
applies the Oracle operator O ¼ I − 2

P
n∈T jnihnj, where

T is the set of target (i.e., solution) states, and the Grover
operator G0 ¼ I − 2j0ih0j, interspersed with Hadamard
operations. The Hadamard operations can be combined
with the G0 by defining G ¼ I − 2jþihþj, such that for

ðπ=4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD=MÞp
applications of GO gives with high

probability a target state [14]. There is an obvious asym-
metry between the operators G and O, as the Oracle inverts
the phase of multiple target states, while the Grover
operator only inverts the sign of one state. The generali-
zation where both G and O inverts the phase on multiple
states was previously studied by Sadhukhan and Tulsi [15].
In their work an analytic solution was found for N ¼ 2 and
M ¼ 2, where N is the number of states that the Grover
operator inverts and M is the number of target states.
However, for largerN,M only numerical solutions could be
obtained. Another generalization was performed by Kato
[16] where the Grover operator was modified to one with a
Hamiltonian only including single qubit operators. This
corresponds to a different situation where a more general
phase (not just �1) is put on a spectrum of states by the
Grover operator. The algorithm works in an asymptotic
sense, where the number of qubits is large. Other gener-
alizations of Grover’s algorithm such as for continuous
evolution [17], zero failure rate [18], arbitrary initial
amplitude distribution [19], and fixed-point search
[20,21] have been investigated. To our knowledge, a
general solution to the case of solving the Grover problem
for arbitrary N, M is not currently available.
The problem of generalizing to any N,M is of interest in

situations where no simple physical implementation is
available to perform G simply. For example, in continuous
variable formulations of quantum computing [22,23] it may
be impractical or undesirable to only put the phase on a
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single quantum space in an infinite Hilbert space [24–26].
The Grover operator in this case would correspond to
inverting the phase on an infinitely squeezed momentum
state, which may be difficult to achieve in practice and also
has a vanishing overlap with solution states encoded in
position eigenstates. As we describe in this Letter, the case
with arbitrary N,M gives a more general formulation of the
problem, as a population transfer between two subspaces of
a larger Hilbert space. It can also lead to a reduction of
resources by a simpler implementation of the Grover
operator. To perform a phase flip on a single state requires
a multiqubit controlled-Z gate, which is decomposable to
elementary gates that grow as the square of the number of
qubits [14]. We show also that it is possible to apply the
quantum phase estimation algorithm in order to perform the
Grover search, and bypass Grover’s algorithm altogether.
This suggests interesting implications for the classifications
of quantum algorithms, in view of the fact that amplitude
amplification and phase estimation are usually considered
to be distinct roots of the dependency tree for quantum
algorithms [14]. We also note that our framework allows for
the opportunity to apply our scheme as a subroutine in other
quantum algorithms that use related methods [27–29].
We show our generalization first for the continuous

time version of the Grover algorithm, where a single
Hamiltonian evolves the state from the initial state to the
target states [14,17] (see Supplemental Material [30]). The
generalized Grover Hamiltonian reads

H ¼ PS þ PT ; ð1Þ
where PS ≡P

n∈Sjψnihψnj and PT ≡P
n∈T jnihnj are

projection operators for the space of states as defined by
the source S and target T , respectively. Here, the param-
eters N ¼ jSj and M ¼ jT j correspond to the rank of the
projectors PS and PT , respectively. We have also made the
generalization that the states in the target and source states
are of arbitrary form, except for orthogonality hψnjψn0 i ¼
δnn0 and hnjn0i ¼ δnn0 . We assume that the source states are
not orthogonal to the target space hψnjPT jψni > 0 and the
rank of H is N þM such that the source and target
subspaces do not contain each other PSPT ≠ PS, PT .
There is an intuitive way to understand the Hamiltonian

formulation of Grover’s algorithm as Rabi oscillations
between the source and target subspaces. Viewing
Eq. (1) in energy space, the effect of the Grover
Hamiltonian is to specify particular states (those in S
and T ) in the Hilbert space to have an energy of 1, which
implicitly sets all the remaining states to have an energy 0
[Fig. 1(a)]. Since the states in S and T are not mutually
orthogonal, there is a transition matrix element between
them equal to the overlap between the states (see
Supplemental Material [30]). The time complexity in this
formulation originates from the need to evolve the
Hamiltonian from the initial to final state, which is the
time required for half a Rabi oscillation. For N ¼ 1

the overlap between jþi and the superposition state over
all T is

ffiffiffiffiffiffiffiffiffiffiffi
M=D

p
. The time for the Rabi oscillation is then

proportional to inverse of this (working in units ℏ ¼ 1),
giving a scaling ∝

ffiffiffiffiffiffiffiffiffiffiffi
D=M

p
.

If S contains more than one state N > 1, simply
preparing the state in one of the source states jψni does
not produce clean oscillations. In Fig. 2(a) an example of
this is shown, where initial states are chosen to be the same
as the source states. For any case with N > 1 the time
evolution fails to give predictable oscillations. Furthermore,
the probability of reaching the target sector tends to
diminish with N. Without clean oscillations the algorithm
is difficult to handle as it is hard to predict what time to
evolve the Grover Hamiltonian, and the success probability
is also reduced. This can, however, be remedied by
choosing a suitable initial state as we show below.
The Hamiltonian (1) has special properties which can be

exploited for the case N,M > 1. Split the Hamiltonian into
two subspaces, defined by states spanned by the states in T
(dimension M ×M) and all the remaining states T
(dimension D −M ×D −M). Defining PT ≡ 1 − PT ,
the Hamiltonian can then be written

H ¼ ðPT þ PT ÞHðPT þ PT Þ ¼
�

A B
B† C

�
; ð2Þ

where the submatrices are defined as A≡ PT PSPT ,
B≡ PT PSPT , C≡ PT PSPT þ PT . Here, A and C are
Hermitian. Because of the special form of the sub-
matrices above, we now show that diagonalizing A and

(c)

(a) (b)

(d)

FIG. 1. (a) Interpretation of the generalized Grover evolution as
Rabi oscillations between source S and target T subspaces.
(b) Energy spectrum of the Grover Hamiltonian after diagonal-
ization. States in the source and target sector appear in pairs with
energy ϵ�n ¼ 1� jcnj. Unpaired states in S and T have an energy
of 1, and all remaining states have energy 0. (c) Quantum circuit
that produces a state in the target sector T for the generalized
Grover algorithm. Here U ¼ e−iH , where H is Eq. (1), O is the
oracle, H is a Hadamard gate, and QFT−1 is an inverse quantum
Fourier transform. (d) Distribution of eigenvalues of the Grover
Hamiltonian (1) for initial states of the form jψni ¼ Hjni and
N ¼ M ¼ 10 and D ¼ 25. The average value of jcnj over all
choices of initial state cav is compared to the standard Grover
scaling of

ffiffiffiffiffiffiffiffiffiffiffi
M=D

p
and the upper bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN=D

p
.
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C simultaneously diagonalizes B. To see this, we may use
the standard properties of the projection operators to show

BB† ¼ A − A2; ð3Þ
B†B ¼ −C2 þ 3C − 2PT : ð4Þ

It thus follows that ½BB†; A� ¼ ½B†B;C� ¼ 0 so that BB†

and A share the same eigenvectors, and similarly for B†B
and C. The matrices can be written A ¼ UT ΛAU

†
T , B ¼

UT ΛBU
†
T , and C ¼ UT ΛCU

†
T , in terms of their diagon-

alized matrices Λ and UT , UT are unitary rotations in the
spaces T , T , respectively. Equations (3) and (4) allow us to
deduce the relationship between the eigenvalues of the
matrices. Let us write the eigenvalues of the matrix C as

ðΛCÞnn0 ¼ ð1þ jcnj2Þδnn0 ; ð5Þ
where we used the fact that PT PSPT is positive definite to
write its eigenvalue is jcnj2, and 1 ≤ n ≤ M here as C is of
rank M. Substituting this into Eq. (4) we may deduce that
the eigenvalues of B are

ðΛBÞnn0 ¼ δnncn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jcnj2

q
: ð6Þ

This may be in turn be used in the quadratic equation (3) to
deduce that the eigenvalues of A are of two types:
ðΛAÞnn ¼ 1 − jcnj2, jcnj2. We also require consistency with
the property of the Hamiltonian TrðHÞ ¼ N þM, which
should be invariant under unitary transformations. The
eigenvalue type 1 − jcnj2 combined with Eq. (5) ensures

this consistency. The remaining eigenvalues are of the
second type with jcnj2 ¼ 0, so that

ðΛAÞnn0 ¼
� ð1 − jcnj2Þδnn0 1 ≤ n ≤ N
0 otherwise

: ð7Þ

In order that Eqs. (5) and (7) give TrðHÞ ¼ N þM, there
can be then at most minðN;MÞ of the jcnj2 to be nonzero.
With the rotation of only UT and UT , the Hamiltonian

may therefore be put in 2 × 2 block diagonal form

H ¼
XminðN;MÞ

n¼1

½ð1 − jcnj2ÞjϵTn ihϵTn j þ cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jcnj2

q
jϵTn ihϵTn j

þ c�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jcnj2

q
jϵTn ihϵTn j þ ð1þ jcnj2ÞjϵTn ihϵTn j�

þ
XmaxðN;MÞ

n¼minðN;MÞþ1

½θN−MjϵTn ihϵTn j þ θM−N jϵTn ihϵTn j�; ð8Þ

where jϵTn i, jϵTn i are the eigenvectors for the A and C
matrices, respectively, and θm ¼ 1 for m > 0 and zero
otherwise. We emphasize that the fact that B diagonalizes
here is nontrivial, without which we would not have the
simple 2 × 2 block diagonal structure,

jϵ�n i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ jcnj

2

r
jϵTn i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jcnj

2

r
jϵTn i ð9Þ

for 1 ≤ n ≤ minðN;MÞ with eigenvalues

ϵ�n ¼ 1� jcnj: ð10Þ
The remaining N þM − 2minðN;MÞ ¼ jN −Mj eigen-
values all are 1, which corresponds to having cn ¼ 0. We
thus obtain a diagonalized energy spectrum of the form
shown in Fig. 1(b), where the nontrivial eigenvalues are
arranged in pairs centered around an energy 1, and the
remaining at exactly 1.
For the purposes of solving the search problem,

jϵTn i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jcnj

2

r
jϵþn i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jcnj

2

r
jϵ−n i ð11Þ

is precisely the desired vector since it is by definition a state
which is completely in the target space. This can be
achieved by preparing

jΨnðt ¼ 0Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jcnj

2

r
jϵþn i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jcnj

2

r
jϵ−n i ð12Þ

and time evolving this state under the Grover Hamiltonian
until a relative minus sign is picked between the two terms.
This occurs at a t ¼ π=2jcnj as the state jϵ�n i has a time
evolving phase of e−ið1�jcnjÞt according to Eq. (10). We
numerically confirm that perfect Grover oscillations are
achieved if the state (12) is prepared for any N, M and
evolved under the Grover Hamiltonian. In Fig. 2(b) we see
that the oscillations take a perfect sinusodial form, with the
probability of reaching the target subspace reaching 1 at

(c)

(b)(a)

(d)

FIG. 2. (a) Time evolution with the generalized Grover Ham-
iltonian with various initial states chosen as jψni. (b) Time
evolution choosing various initial state jΨnðt ¼ 0Þi. (c) Evolving
the various jΨnðt ¼ 0Þi using a gate based Grover iteration. One
Grover iteration corresponds to the combined application of G ¼
e−iπPS ¼ 1–2PS and O ¼ e−iπPT ¼ 1–2PT . For (a),(b),(c)
D ¼ 100, N ¼ 5 source states, and M ¼ 5 target states. The
source states jψni are taken to be orthonormal random vectors.
(d) Scaling of the average energy separation cav for M ¼ N,
D ¼ 25, and averaged over random choices of jψni ¼ Hjni
(points). Scaling of the maximum jcnj (∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN=D

p
) and standard

Grover result (∝
ffiffiffiffiffiffiffiffiffiffiffi
M=D

p
) are shown for comparison (dashed

lines). A straight line fit of the points gives a slope of α=2 ≈ 0.45.
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times t ¼ π=2jcnj. Although derived for the Hamiltonian
formulation of Grover’s algorithm, the initial state (12) also
works for the gate based version of Grover’s algorithm,
where the signs are inverted on the source and target states
in sequence. Figure 2(c) shows the evolution under such
Grover iterations for the same choice of random source
states. The evolution shows a similarity to Fig. 2(b) which
is as expected in the view that the gate version of Grover’s
algorithm is a Trotter expansion of the Grover Hamiltonian
[14]. Some of the faster oscillations do not reach a
probability 1 due to the relatively small Hilbert space of
states that are used in the simulation, where it is easy to
overshoot the maximum in a discrete evolution.
For the standard Grover case (N ¼ 1), the initial state

(12) takes a convenient form jΨðt ¼ 0Þi ¼ jψn¼1i inde-
pendent of the target states T . Unfortunately, for the N > 1
case there is no unique initial state that can be prepared that
is independent of the target states. This is a serious issue, as
it suggests that one requires knowledge of the matrices A
and C, which in turn requires knowledge of the target states
in advance, defeating the purpose of the algorithm. We,
however, introduce an alternative procedure that is based on
the phase estimation algorithm, which overcomes this
problem [31,32].
Instead of time evolving the Grover Hamiltonian, we

directly prepare the desired state (11) using a quantum
circuit as shown in Fig. 1(c) (see Supplemental Material
[30]). The algorithm involves two steps. In the first step,
phase estimation is used to obtain an eigenstate jϵ�n i of the
Grover Hamiltonian. This can be prepared with high
probability by putting any one of the source states jψni
as the input of the phase estimation and measuring the
register. The source states jψni can be represented with
high fidelity in terms of jϵ�n i, since these fully span
the space S as long as M ≥ N. Working with M ≥ N
avoids the presence of the jϵTn i eigenstates in Eq. (8), which
reduce the success probability; we henceforth assume this
condition. Using the eigenstates jϵ�n i as an input to the
“quantum postprocessing” (QPP) part of the circuit, which
gives an output before measurement

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ jcnj

p j0ijϵTn i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jcnj

p j1ijϵTn i. On measurement of the ancilla qubit, a
state in the target subspace is obtained by postselecting the
outcome j1i. This occurs with probability close to 1=2,
because for a small overlap of the source and target spaces
jcnj ≪ 1 [33].
What is the time complexity for this phase estimation

version of Grover’s algorithm? The QPP only adds a
constant overhead to the algorithm; hence, this is negli-
gible. The execution time of phase estimation entirely
depends upon the desired precision of the eigenvalue
readout. To perform the phase estimation, controlled-U
gates to the power of 2k are required, where 0 ≤ k ≤ r − 1,
r is the number of register qubits in the phase estimation
circuit, and U ¼ e−iH. As there is no simplified way in

general of performing the powers of U, this part must be
evolved directly by evolving the Grover Hamiltonian to
times 2k. The total time of the search algorithm using the
phase estimation is dominated by the number of controlled-
U gates, which is ≈

P
r−1
k¼0 2

k ≈ 2r. The r required sets the
energy resolution δE of the phase estimation readout. The
number of register qubits required for a given energy
resolution can be related according to δE, is r ¼
−log2δEþ log2f2þ ½1=2ð1 − pÞ�g [14], where probability
p of the phase estimation succeeding to classify a given
state into the energy resolution. In our case, the required
energy resolution is set by the energy difference between
the jϵþn i and jϵ−n i, which is ϵþn − ϵ−n ¼ 2jcnj. Since there are
N pairs of eigenstates jϵ�n , we can estimate the required
energy solution as δE ≤ 2cav, where the average is
cav ¼

P
njcnj=N. Taking into account of the 1=2 success

probability of the quantum postprocessing, we finally arrive
at a time scaling of the algorithm,

T ≈
2þ 1

2ð1−pÞ
cav

: ð13Þ

The time scaling of the algorithm depends upon the
energy spectrum, which in turn depends on particular choice
of states jψni. For infinitesimal overlap of the source and
target, the jcnj are also infinitesimal and the time diverges.
More typically, one would choose source states that are a
superposition of all states. As an example, let us examine the
case where the source states are jψni ¼ Hjni for n ∈ S,
where H is the Hadamard operation producing an equal
amplitude superposition of all states. The scaling of the
energies can be shown to be exactly jcnj ∝ ð1= ffiffiffiffi

D
p Þ, and

bounded by jcnj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN=D

p
. Figure 1(d) shows a plot of the

typical distribution of the eigenvalues ϵn − 1 ¼ �jcnj of the
Grover Hamiltonian. We see that the eigenvalues are
bounded by the relation jcnj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN=D

p
as expected, but

most are distributed in a range that ismuch less than this. The
average cav is very close to the standard Grover scaling offfiffiffiffiffiffiffiffiffiffiffi
M=D

p
. To obtain the scaling of cav with respect to M, we

numerically average over random choices of jψni, for N ¼
M and fixed D. We see that the scaling shows a similar
exponent to the standard Grover case. Putting this into (13)
we obtain a time resource estimate for the N ¼ M Grover’s
algorithm with Hadamard source states as

T ∝
ffiffiffiffiffiffiffi
D
Mα

r
; ð14Þ

where the ∝
ffiffiffiffi
D

p
is exact and we estimate α ≈ 0.9. This is

consistent with the bounds derived in Refs. [34–36]. Thus,
while it is possible for some eigenvalues jcnj to exceed the
bound, on average it is consistent with the optimal scaling
of cav ∝

ffiffiffiffiffiffiffiffiffiffiffi
M=D

p
.

In summary, we have generalized Grover’s algorithm to
the case where a sign inversion is performed by the Grover
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operator forN states and the oracle forM states.We find that
provided the state is initialized in a suitable state (12), the
time evolution of the Grover Hamiltonian induces oscil-
lations between the source and the target sector in the same
way as the standard Grover’s algorithm. Unfortunately, this
initial state can only be prepared in the general case with the
knowledge of the solution states. However, we can over-
come this by instead using a phase estimation procedure to
solve the search problem instead, with a similar time scaling
to the optimal case. This can lead to a reduction in the
number of gates due to a simpler implementation of
the Grover operator (see Supplemental Material [30]).
The phase estimation approach has the advantage that it
can be applied in the general N, M case. As amplitude
amplification and phase estimation are typically considered
to be different classes of quantum algorithm, it is interesting
that in fact both approaches have a similar performance. This
suggests that phase estimation alone potentially gives a basis
for performing both amplitude amplification and phase
estimation based algorithms, which cover an extremely
wide range of quantum algorithms known today.
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