Ultraslow weak-light solitons and their storage and retrieval in a kagome-structured hollow-core photonic crystal fiber
Posted: 2018-04-04   Author: 王玲   Views: 82

We investigate the formation and propagation of ultraslow weak-light solitons and their memory in the atomic gas filled in a kagome-structured hollow-core photonic crystal fiber (HC-PCF) via electromagnetically induced transparency (EIT).We show that, due to the strong light-atom coupling contributed by the transverse confinement of the HC-PCF, the EIT and hence the optical Kerr nonlinearity of the system can be largely enhanced, and hence optical solitons with very short formation distance, ultraslow propagation velocity, and extremely low generation power can be realized. We also show that the optical solitons obtained can not only be robust during propagation, but also be stored and retrieved with high efficiency through the switching off and on of a control laser field. The results reported herein are promising for practical applications of all-optical information processing and transmission via the ultraslow weak-light solitons and the kagome-structured HC-PCF.

  

Opt. Express 25,19094(2017).pdf